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Abstract—The trade-offs between error probabilities in quan-
tum hypothesis testing are by now well-understood in the central-
ized setting, but much less is known for distributed settings. Here,
we study a distributed binary hypothesis testing problem to infer
a bipartite quantum state shared between two remote parties,
where one of these parties communicates to the tester at zero-
rate, while the other party communicates to the tester at zero-
rate or higher. As our main contribution, we derive an efficiently
computable single-letter formula for the Stein’s exponent of this
problem, when the state under the alternative is product. As a
key tool for proving the converse direction of our results, we
develop a quantum version of the blowing-up lemma which may
be of independent interest.

I. INTRODUCTION

Quantum hypothesis testing to discriminate between two
quantum states is perhaps the most fundamental and simplest
form of inference on a quantum system. The performance of
quantum hypothesis testing is well-known and characterized
by the Helstrom-Holevo test which achieves the optimal trade-
off between the type I and II error probabilities. Moreover,
given an arbitrary number of independent and identical (i.i.d.)
copies of quantum states, the best asymptotic rate of decay
of error probabilities (or error-exponents) in different regimes
of interest have also been ascertained [1]-[3]. These error-
exponents have simple characterizations in terms of single-
letter expressions involving quantum relative entropy [4] and
its Rényi generalizations [5]-[9]. However, such expressions
depend on the assumption that the tester, who performs the
test, has direct access to the i.i.d. copies and can perform the
optimal measurement to deduce the true hypothesis. We refer
to such a scenario as the centralized setting. The situation
dramatically changes when the tester has only remote or
partial access to the quantum (sub-)systems. In contrast to
the centralized setting, the performance of quantum hypothesis
testing in such scenarios is much less understood.

Here, we consider a distributed binary hypothesis testing
problem (see Figure 1) to discriminate between a bipartite
quantum state shared between two parties, Alice (A) and Bob
(B), with the following null and alternative hypotheses:

Ho : State on AB is pag, (1a)
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Fig. 1: Distributed quantum hypothesis testing under a zero-
rate noiseless communication constraint. At least, one of the
parties (Alice here) communicates at zero-rate to the tester
(Charlie). The other party (Bob) communicates to Charlie at
zero-rate or higher.

H; : State on AB is pap := pa ® pp. (1b)

Alice and Bob have access to as many i.i.d. copies of the true
state as desired, and are allowed to perform local operations
on the associated systems A™ and B", respectively. The output
of the local operations are communicated to the tester Charlie,
who performs the test. In other words, Alice and Bob apply
completely positive trace-preserving (CPTP) linear maps (or
quantum channels) F,, = FA"2?Wr and G, = G5"~Vn,
respectively, with |W,,| A |V,,| > 1, where |W,,| denotes the
dimension of system W,,. Alice sends W, and Bob sends
V,, to Charlie over their respective noiseless channels. Let
ow, v, denote the state of (W,,, V,,) under the null and &w,, v,
denote the state of the same systems under the alternative.
Charlie applies a binary outcome POVM T, = {T,,,I — T,,}
on (W,,V,,) to decide which hypothesis is true. The type I
and type II error probabilities achieved by the test 7T, are

an(Fn, Gn, Tn) = Tr [(I = To)ow, v, ],
and Bn(]:na g’ruﬁz) =Tr [Tﬂ&WTLV!L]7
respectively.

We assume that at least one of the parties communicates
at zero-rate to Charlie, which we take to be Alice without



loss of generality (it turns out that the results in this paper do
not depend on whether this is Alice or Bob). The zero-rate
communication constraint for Alice means that

1
lim —log |W,| — 0. 2)
n—o0o N

We are interested in the characterizing the Stein’s exponent
defined as

0(€7PAB7/5AB> = 11_)1’I1 - (3)
if the above limit exists, where

ﬁn(e) = P inf {Bn(]:nag'run) : an(]:rug'ruﬁz) < 6}-

Zero-rate communication is practically relevant in scenarios
where communication is expensive, e.g., sensor networks or
communication in an adversarial environment. For instance,
wireless sensor networks powered by batteries used for in-
dustrial automation, agriculture, smart cities, environmental
monitoring or healthcare have limited energy budgets and
typically monitor large amounts of data between successive
communication phases with the central controller. Potential
quantum applications include tasks in quantum sensing and
metrology, which benefit from a spatially distributed network
architecture (see e.g. [10]-[12] and references therein). An-
other pertinent application is covert inference, where zero-rate
communication becomes essential to avoid detection by an
adversary (see e.g. [13]-[16]).

In contrast to the centralized scenario, design of an optimal
hypothesis testing scheme in distributed settings also involves
an optimization over all feasible encoders (in addition to
the test statistic). In distributed quantum settings, there is
an additional complexity arising due to constraints on the
kind of operations that could be performed on the system.
For instance, such constraints could occur naturally due to
restrictions on the set of feasible measurements (e.g., due
to geographic separation) or the distributed processing of in-
formation post-measurement. This makes the characterization
of Stein’s exponent more challenging, and, even classically,
single-letter expressions are known only in special cases. One
such important setting is the zero-rate regime, which partly
motivates our study.

As our main contribution, we obtain an efficiently com-
putable single-letter formula for the Stein’s exponent when
the state under the alternative is the product of its marginals,
ie.,

0(¢,pap; pa © pp) = D(pallpa) + D(psllps) Ve € (0,1).

This characterization extends the analogous classical expres-
sion derived in [17] and [18] to the quantum setting. The
proof of the above formula as usual involves establishing
achievability (lower bound) and a converse (upper bound).
For proving achievability, we use quantum-typicality based
arguments inspired by [19]. For establishing the upper bound,

we derive a non-asymptotic strong converse' via a pinching-

based argument [20] in conjunction with a quantum version of
the blowing-up lemma [21]-[23] that we develop. The lower
and upper bounds match asymptotically and characterize the
Stein’s exponent in terms of the desired expression.

A. Related Literature

Distributed hypothesis testing with the goal of testing for
the joint distribution of data has been an active topic of
research in classical information theory and statistics, with
the characterization of Stein’s exponent and other perfor-
mance metrics explored in various multi-terminal settings. A
multi-letter characterization of the Stein’s exponent in a two-
terminal setting where the communication happens over a
noiseless (positive) rate-limited channel was first established
in [24], along with a single-letter formula for testing against
independence (i.e. testing a joint distribution vs the product
of its marginals). Invoking the blowing-up lemma, a strong
converse was also proven under a positivity assumption on
the probability distribution under the alternative. Distributed
hypothesis testing under a zero-rate noiseless communication
constraint was introduced in [17], where a one-bit commu-
nication scheme indicating whether the observed sequence at
each encoder is typical or not was proposed. Subsequently,
the optimality of the one-bit scheme along with a strong
converse was established in [18] by leveraging the blowing-up
lemma. The trade-off between the type I and type II error-
exponents in the same setting under a positive and zero-rate
communication constraint was first explored in [25], where
inner bounds were established (see also [26], and [27]-[32]
for more recent progress and extensions).

In contrast to the above, analogous problems in quantum
settings have been much less explored. The only exception
that we are aware of is [33], which among other contribu-
tions, established a single-letter characterization of the Stein’s
exponent for testing against independence including a strong
converse. Here, we consider the first quantum analogue of the
problem studied in [17], [18]. We briefly compare our work
with [33]. While [33] treats the positive rate communication
constraint for testing against independence, we work in the
zero-rate setting allowing arbitrary marginals p4 and pp. Also,
our proofs involve markedly different techniques from those
used in [33]. In particular, the converse proof in [33] relies
on quantum reverse-hypercontractivity, whereas we employ a
novel quantum version of the blowing-up lemma. Moreover,
the strong converse in [33] is shown for a classical-quantum
state p4p, while our proof works for general pp.

B. Notation

Throughout, we consider the setting of a finite dimensional
Hilbert space for the systems involved. The set of density
operators (or quantum states) on Hilbert space of dimension
d, is denoted by S;. Tr[-] signifies the trace operation. The
notation < denotes the Lowner partial order in the context

I'Strong converse here refers to the optimal Stein’s exponent being inde-
pendent of the constraint, € € (0, 1), on the type I error probability.



of operators, i.e., for Hermitian operators Hy, Hy, H; < Hj
means that Hy — H; is positive semi-definite. I denotes the
identity operator. For operators L, Lo, L1 < Lo designates
that the support of L is contained in that of Lo. For reals a, b,
aAb:=min{a,b} and a Vb = max{a, b}. For a finite discrete
set X, a positive operator-valued measure (POVM) indexed
by X is a set M = {M,},ecx such that M, > 0 for all =
and > ., M, = I. Such a POVM induces a measurement
channel (quantum to classical channel) specified by

M(w) = Z Tr [Myw]|z){z].
reEX
For composite systems, we indicate the labels of the sub-
systems involved as subscript or superscript wherever con-
venient, e.g., pap for the state of bipartite system AB. The
marginal wy4 (resp. wp) of a bipartite linear operator w4 p is
defined by taking partial trace with respect to B (resp. A).

II. MAIN RESULT

The next theorem which characterizes the Stein’s exponent
for the hypothesis test in (1) is our main result.

Theorem 1 (Single-letterization of Stein’s exponent) For any
pPAB, paB = pa®@ pp and € € (0,1),

0(¢,pap; pap) = D(pallpa) + D(psiB) - )

Before we prove Theorem 1, we discuss a simple impli-
cation of it for testing against independence, in which case
paB = pa ® pp. Note that (4) implies that 0(e, pap, pa ®
pp) = 0. To compare this with the performance in the
centralized setting, recall that the Stein’s exponent in the
latter case is equal to the mutual information evaluated with
respect to p4p (see, e.g., [34], [35] for a composite hypothesis
testing version), which is positive except in the trivial case
pAB = pa ® pp. Hence, there is a strict gap between
the performance under zero-rate and centralized setting as
expected.

Proof. First, we show achievability of Stein’s exponent given
in (4), i.e., we establish that for all € € (0, 1],

0(¢, paB, pa) > D(pallpa) + D(psllpB) -

Our proof relies on the concept of (relatively) typical projec-
tors considered in [19] (see the full version of our paper [36,
Proof of Theorem 2] for an alternative proof). For § > 0, let
Psn(p,0) =3 ynea, (5,p,0) Por denote the orthogonal pro-
jection considered in [19, Equation 10], where Pyn = |2™) (2"
for an orthonormal eigenvector |z™) of o®" and

. en(Tr [plog o]—6) < Tr [0_®an71’]
< en(Tr [plogo]+d) [ °

A, (8, p,0) = {x

Consider

nnpn

Mg B (pap, pap) = M§, (pa.pa) ® MP, (pp, i),
where

Mé,n(P7 U) = P(S,n(pa U)P5,n(p7 p)Pé,n(pu U)7

for density operators p and o. Alice and Bob first performs
local measurements using binary outcome POVMs

M =M My = MG (pa, pa), Tan— Mg (pa,pa)
Mf :{MO aMlB }:: {an (va ﬁB)a IB" _MJBn (pBa ﬁB)}a
respectively. The outcomes are sent to Charlie who decides in
favour of the null hypothesis if and only if both outcomes are
zero. We next evaluate the type I and type II error probability
achieved by this one-bit communication scheme. First, note

that for any commuting M, My such that 0 < My, My < I
and density operator o, we have

0 S Tr [O'(I — Ml)(.[ — MQ)]
=1—Tr[oM;] — Tr [c Ma] + Tr [0 M1 M>). )

Applying (5) with My = M (pa,pa) ® Ip» and My =
Ian @M (SB; (pB, pB), the type I success probability converges
to one as follows:

Tr {M{‘;Bn (pas, ﬁAB)P%%}
> Tr [(Mf; (pa,pa) ® IBn)P%%}
+Tr {(IA" ® MP, (PBﬁB))P%%} -1

— 1.
In the above, the inequaliEy follows from (5) and the
final step is due to Tr [Mg‘}: (pa,pa)p3"] — 1 and
Tr [M(SB: (pp,pB)pS"] — 1, which in turn follows from
[19, Lemma 4(4)] and is a consequence of the weak law of
large numbers. Hence, the type I error probability vanishes

asymptotically. Moreover, the type II error probability can be
upper bounded as

Te [V 5" (pap, an) (75" @ 75")]

= Tx (N33, (pa, ) P5" | T [N (01, )03 |

< e~ Bpallpa)+Bppllps)—49)
where the last inequality follows due to [19, Equation 20].
This implies that

0(€, paB, pas) = D(pallpa) + D(psllps) — 46,
for all € € (0,1]. Since § > 0 is arbitrary, the claim follows.
Next we show the converse, i.e.,
0(¢, pap, pap) < D(pallpa) + D(pslloB) - (6)

First, consider psp is such that p4 ® pgp € pa ® pp. This
implies that either pa € pa or pg ¥« pp. In either case,
D(pallpa)+D(pg|lpr) = co. Hence, (6) holds trivially. Next,
consider that py ® pp K pa ® pp. We will use the following
non-asymptotic strong-converse which implies (6).



Lemma 1 (Non-asymptotic strong converse) Let pap = pa®
B, (Tn)nen be a non-negative sequence and 0 < € < 1. Then

sup 108 80 (Fo 6o T)

(FrsGn:Tn):an (Fn,Gn, Tn)<e T
D(Man(Php) [Mn(P35))

n(l —2e=2r7)

1
n(l —2e=2m7)’
where PLO, is the class of all rank-one local projective
measurements, €, = (1 — ¢) Dn(pas) == {P%p :
P = p3" P = PE" ),
(dA vV dB)“ n(€n,n)] Znn(ﬁnﬂ‘n)] (n)

< max min
My, €PLO, 5% 5 €Dy (paB)

2
+ glOgﬁ/n(Envrn) + (7)

ﬁn(enarn) = c L ) (8)
E(,Ufmin(pAB)) “ ( ns n)]

ln(en,rn) = \/ﬁ ( V —0.5log (O5En) + rn) y &)

fmin(paB) :=  min _ (xZ|pap|zT), (10)

T, 2eX L XXy
da (resp. dg) is the dimension of the Hilbert space associated

with A (resp. B), and {|x)},cx, (resp. {|J)>}I€;g+) is the
set of orthonormal eigenvectors corresponding to positive
eigenvalues in the spectral decomposition of p4 (resp. pp).

To prove (6) from (7), we first show that

i . DM (p%) | M (P35))

11m max min 3

n—oo M,€PLO,  plip n(l —2e=2m)
€Dn(panr)

an)
=PA" @ PE" € PLO and

= D(pallpa) + D(pzllpB) -

To see this, note that for any M.,
g € Dp(pap), we have

D(My(pa5) [Mn(635))

= DM (P )M (pA®ﬁ%))+D<’PT‘?n( n) pA"(~®n))
+ D(PBn "PB ~®n)>
=DM () IMn (P4 ®ﬁ%))+D(PA"( m|lpa” (52 >)

Bn B, -
+D(PE (o) PE" (5M)

where the last equality follows because p%p € Dy(paB)

implies that 3% = p%" and p% = p5". Taking minimum

over p%i g € Dy(pap), we obtain

o min D(Ma(25)||Ma(755))
=D(P" (oM (55™)) +D(PE" (5" |[PE" (75))

because relative entropy is non-negative and hence the min-
imum is achieved by plhp = % ® py = p%" @ pP"
Normalizing by n and maximizing over M,, € PLO,, leads
to

D n n n ~Qn
max min (M (pAB)HM (pAB))
M €PLOy, p% s €D (pan) n

_ Dau, (P53 173") n Dact, (05" 17%")
n n

)

since measured relative entropy with respect to all measure-
ments is same as over all orthogonal rank-one projective
measurements [37]. Taking limit n — oo and using r,, — oo,
(11) follows since for any density operators p, o (see e.g. [38])

D Rn Xn
i DALL, (P [[0®7)

n—oo n

Dlpllo) .- (12)

Having shown (11), we next choose 7, such that the last
two terms in (7) vanishes. The last term converges to zero
for any r, — oo. Hence, we only need to ensure that
1og ¥ (€n,70)/n — 0 when pa ® pp < pap. Let 7, = n'/3,
Note that ps @ pp < pap implies that fiyin(pap) > 0. Using
(1) < (ne/l)t, we have

€n,T ln(€n,mn n
2da V dp)tn(enmn)] Zl[:l( )1 (")
rln(envrn)]
))

Yn (€n7 rn) = ~ N
€n (Nmin(pAB

2(da V dp) [t )11y (e, 7)] (me) [T (o)

)
B €n (ﬂmin(ﬁAB n 6717 rn ) [l (ensrn)]

For the given choice of 7, l,,(€,,7,) = o(n) (see (9)) since

log [W,,| = o(n) due to (2). Moreover, for €,, = (1—¢)/|W,|?,

log e, = o(n). Consequently, log (¥, (€n,7s))/n — 0. From

the above, (6) follows from (7) by taking limit superior w.r.t.

n, and using (11). ]

Due to space constraints, we will only provide a sketch of
the proof of Lemma 1. Full details can be found in [36, Proof
of Lemma 13].

1) Sketch of Proof of Lemma 1: A key ingredient of
the proof is the following bipartite quantum analogue of the
blowing-up lemma [21]-[23], which at a high-level expresses
a concentration of measure phenomenon.

Lemma 2 (Bipartite version of quantum blowing-up lemma)
Suppose 0 < ¢, < 1, 0 < M,f‘n X Mf" < Ipnpn, and
paB € S, dy be such that Tr [p%”M;?"] ATr [p%"an] >
€n for all n € N. Then, for any cap € Sq,a, and non-

negative sequence (rp)nen, there exists a projector 0 <
PA" @ PHB" < I4upn such that

Tr {p%”P;L"A”} ATr [pgnp,jm} >1—e 2, (13a)

Tr 055 (PEY" @ PEE") | < T [(M @ M2 )o5n)
X Vi (€nsTn), (13b)

where ¥y, (€n, 1) is as given in (8) with o ap in place of pap.

We omit the proof of Lemma 2, which can be found in [36,
Proof of Lemma 15].

Proceeding with the proof of Lemma 1, we may assume
without loss of generality that V,, = B" and gf”ﬂ"” =
TB"=B" Let FA"~Wn be an arbitrary encoder (CPTP map),

ow,Bn 1= (f;l‘l"ﬁWn ® IB"HB") (P%%),
Gw,pn = (Fa =W @ B 2B (537,

and 7, = {Mw, pn,Iw, g~ — M, g~} be any binary out-
come POVM. Consider the spectral decomposition oy, =



anewn Aw, P, , where { Py, }w, ew, is a set of orthogonal
rank-one projectors such that )y, Py, = Iw,. Let
Hy, () denote the pinching map® (see e.g. [38]) w.r.t. these

projectors, i.e.,
> Py,wP,,.
wp €Wp,

The key idea behind the proof is to use pinching map to
construct a new test 7, = {MW Bry Iw,gn — My, pn}
satisfying two properties. Firstly, My, g» can be written as
a separable sum, i.e., sum of tensor products of positive
operators with the number of terms in the sum scaling at
zero-rate with n. Secondly, the pinching operation is such that
the error probabilities achieved by 7, are not too different
(in the exponent) from those achieved by 7. The separable
decomposition of My g» enables leveraging the bipartite
version of the quantum blowing-up lemma to obtain a new
POVM that achieves a vanishing type I error probability with a
negligible decrease in the type II error exponent. Then, relating
the error probabilities achieved by the modified and original
test leads to the desired claim.
Define

MWW,B” = (HW" X IBW’A)BW’) (MWan)

= > (Pu, ®Ip)Mw, g (Pu, ® In). (14)
Wy €Wp

From the pinching inequality [20], we have

- Mw, gn
My, pn > ———. (15)
(Wl
Then, o, (Fy, Gn, Tn) < € and (15) implies
— TI‘[O'W B"MW Bn] 1—e€
Tr O'WanMWan = L “ > . (16)
: ] (W (W
Next, observe that My, p» can be written as
My,pr= Y. Pl oME", an

wp €Wy,

for some { M5’ i “}wnew, such that ME" > 0 for all w, € W,
and Y, MJ = Mpn. This implies that

T [awanMWan]:ZTr[ (M2 ME)p3n], (8)

Wn

where MA = FiWn—a” (PW") and FiWn=A4" s the
adjoint map of }'A —Wx_ Note that 0 < MA < Ipn
and waew MA = IAn since FiWr=4" is a completely
positive unital map, being the adjoint of a CPTP map (see e.g.

[38]). From (16) and (18), we obtain

2. T

Wn €Wn,

[0 @ ME)o%3] = T

2Note that we perform pinching w.r.t. rank-one orthogonal projectors which
is slightly different from the usual pinching operation, where the projectors
are formed by combining eigenprojections corresponding to same eigenvalues.

Hence, there exists some w* € W,, such that

Tr [pAB<MA ®MB")} ﬁ/V—\Z

SIAH andOSMf* SIB",
1—e€
[Wa|?

By Lemma 2, there exists 0 < PF4" < I4n and 0 < PHB" <
Ipn such that

Te (o5 PEA | AT [pg PP 21— e, 19)

Since 0 < MA!

Tr {p%"Mu‘?r} A Tr [ en B! }

and Tr |55 (P @ PEE")|
® ME')p%n],

where 7, (€,, 7, ) is as defined in (8) with €, := (1—¢)/|W,,|2.

Since 7 = p3™ and p, = p%™ for any p% 5 € Dy(pap), we
have from (19) that

Tr [p APJA"} ATr [ﬁ%P,jB”} >1— e 2,

< T2 (ens ) Tr [ (M 20)

min
ﬁ:«f\B €Dy (PAB)

This implies that for any p% 5 € Dy, (paB).
Tr [pp (P @ BEFT)|

(@) n n

> T [fap(PE" @ Ipn)| + T [fap(Tan @ PEF)| -1
=Tr [P | + T [p3 P -1
>1- 26_27'721,

where (a) used (5). Using (20) and Ily, (&
can further show that

Tr {~®” (P+An oY P+Bn)] < 7i(€na7‘n)5n(‘/fnagna,];L)-

Consider the local POVM M; = M4" @ ME", where
MY =P T — PFA"} and ME" = (PP T -
P+B"}. Using (21) and the above inequality, it is possible
via an argument involving the log-sum inequality to re-
late By (Frs Gns Tn) to DM (5% 5) || M (557%)). eventually
leading to (7). Due to space constraints, we omit the details
and refer to [36, Proof of Lemma 13].

2n

w,) = 0w,, we

III. CONCLUDING REMARKS

We derived a single-letter expression for the Stein’s expo-
nent of a distributed quantum hypothesis testing problem under
zero-rate noiseless communication constraint when the state
under the alternative is of product form. When at least one of
the parties is constrained to communicate classical information
to the tester at zero-rate, a multi-letter characterization of this
exponent in terms of max-min optimization of regularized
measured relative entropy can be established [36]. Looking
ahead, it would be worthwhile to investigate more general
instances where an efficiently computable expression for the
Stein’s exponent can be derived. Also of interest is to explore
the trade-offs between the (Hoeffding’s) exponents of both the
type I and type II error probabilities as well as a computable
characterization of the Chernoff’s exponent.
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