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Abstract—The trade-offs between error probabilities in quan-
tum hypothesis testing are by now well-understood in the central-
ized setting, but much less is known for distributed settings. Here,
we study a distributed binary hypothesis testing problem to infer
a bipartite quantum state shared between two remote parties,
where one of these parties communicates to the tester at zero-
rate, while the other party communicates to the tester at zero-
rate or higher. As our main contribution, we derive an efficiently
computable single-letter formula for the Stein’s exponent of this
problem, when the state under the alternative is product. As a
key tool for proving the converse direction of our results, we
develop a quantum version of the blowing-up lemma which may
be of independent interest.

I. INTRODUCTION

Quantum hypothesis testing to discriminate between two
quantum states is perhaps the most fundamental and simplest
form of inference on a quantum system. The performance of
quantum hypothesis testing is well-known and characterized
by the Helstrom-Holevo test which achieves the optimal trade-
off between the type I and II error probabilities. Moreover,
given an arbitrary number of independent and identical (i.i.d.)
copies of quantum states, the best asymptotic rate of decay
of error probabilities (or error-exponents) in different regimes
of interest have also been ascertained [1]–[3]. These error-
exponents have simple characterizations in terms of single-
letter expressions involving quantum relative entropy [4] and
its Rényi generalizations [5]–[9]. However, such expressions
depend on the assumption that the tester, who performs the
test, has direct access to the i.i.d. copies and can perform the
optimal measurement to deduce the true hypothesis. We refer
to such a scenario as the centralized setting. The situation
dramatically changes when the tester has only remote or
partial access to the quantum (sub-)systems. In contrast to
the centralized setting, the performance of quantum hypothesis
testing in such scenarios is much less understood.

Here, we consider a distributed binary hypothesis testing
problem (see Figure 1) to discriminate between a bipartite
quantum state shared between two parties, Alice (A) and Bob
(B), with the following null and alternative hypotheses:

H0 : State on AB is ρAB , (1a)

Hypotheses Encoders
Alice

Bob Tester (Charlie)

Fig. 1: Distributed quantum hypothesis testing under a zero-
rate noiseless communication constraint. At least, one of the
parties (Alice here) communicates at zero-rate to the tester
(Charlie). The other party (Bob) communicates to Charlie at
zero-rate or higher.

H1 : State on AB is ρ̃AB := ρ̃A ⊗ ρ̃B . (1b)

Alice and Bob have access to as many i.i.d. copies of the true
state as desired, and are allowed to perform local operations
on the associated systems An and Bn, respectively. The output
of the local operations are communicated to the tester Charlie,
who performs the test. In other words, Alice and Bob apply
completely positive trace-preserving (CPTP) linear maps (or
quantum channels) Fn = FAn→Wn

n and Gn = GBn→Vn
n ,

respectively, with |Wn| ∧ |Vn| > 1, where |Wn| denotes the
dimension of system Wn. Alice sends Wn and Bob sends
Vn to Charlie over their respective noiseless channels. Let
σWnVn

denote the state of (Wn, Vn) under the null and σ̃WnVn

denote the state of the same systems under the alternative.
Charlie applies a binary outcome POVM Tn = {Tn, I − Tn}
on (Wn, Vn) to decide which hypothesis is true. The type I
and type II error probabilities achieved by the test Tn are

αn(Fn,Gn, Tn) = Tr [(I − Tn)σWnVn ],

and βn(Fn,Gn, Tn) = Tr [Tnσ̃WnVn ],

respectively.
We assume that at least one of the parties communicates

at zero-rate to Charlie, which we take to be Alice without



loss of generality (it turns out that the results in this paper do
not depend on whether this is Alice or Bob). The zero-rate
communication constraint for Alice means that

lim
n→∞

1

n
log |Wn| → 0. (2)

We are interested in the characterizing the Stein’s exponent
defined as

θ(ϵ, ρAB , ρ̃AB) := lim
n→∞

− log β̄n(ϵ)

n
, (3)

if the above limit exists, where

β̄n(ϵ) := inf
Fn,Gn,Tn

{βn(Fn,Gn, Tn) : αn(Fn,Gn, Tn) ≤ ϵ}.

Zero-rate communication is practically relevant in scenarios
where communication is expensive, e.g., sensor networks or
communication in an adversarial environment. For instance,
wireless sensor networks powered by batteries used for in-
dustrial automation, agriculture, smart cities, environmental
monitoring or healthcare have limited energy budgets and
typically monitor large amounts of data between successive
communication phases with the central controller. Potential
quantum applications include tasks in quantum sensing and
metrology, which benefit from a spatially distributed network
architecture (see e.g. [10]–[12] and references therein). An-
other pertinent application is covert inference, where zero-rate
communication becomes essential to avoid detection by an
adversary (see e.g. [13]–[16]).

In contrast to the centralized scenario, design of an optimal
hypothesis testing scheme in distributed settings also involves
an optimization over all feasible encoders (in addition to
the test statistic). In distributed quantum settings, there is
an additional complexity arising due to constraints on the
kind of operations that could be performed on the system.
For instance, such constraints could occur naturally due to
restrictions on the set of feasible measurements (e.g., due
to geographic separation) or the distributed processing of in-
formation post-measurement. This makes the characterization
of Stein’s exponent more challenging, and, even classically,
single-letter expressions are known only in special cases. One
such important setting is the zero-rate regime, which partly
motivates our study.

As our main contribution, we obtain an efficiently com-
putable single-letter formula for the Stein’s exponent when
the state under the alternative is the product of its marginals,
i.e.,

θ(ϵ, ρAB , ρ̃A ⊗ ρ̃B) = D(ρA∥ρ̃A) + D(ρB∥ρ̃B) , ∀ϵ ∈ (0, 1).

This characterization extends the analogous classical expres-
sion derived in [17] and [18] to the quantum setting. The
proof of the above formula as usual involves establishing
achievability (lower bound) and a converse (upper bound).
For proving achievability, we use quantum-typicality based
arguments inspired by [19]. For establishing the upper bound,

we derive a non-asymptotic strong converse1 via a pinching-
based argument [20] in conjunction with a quantum version of
the blowing-up lemma [21]–[23] that we develop. The lower
and upper bounds match asymptotically and characterize the
Stein’s exponent in terms of the desired expression.

A. Related Literature

Distributed hypothesis testing with the goal of testing for
the joint distribution of data has been an active topic of
research in classical information theory and statistics, with
the characterization of Stein’s exponent and other perfor-
mance metrics explored in various multi-terminal settings. A
multi-letter characterization of the Stein’s exponent in a two-
terminal setting where the communication happens over a
noiseless (positive) rate-limited channel was first established
in [24], along with a single-letter formula for testing against
independence (i.e. testing a joint distribution vs the product
of its marginals). Invoking the blowing-up lemma, a strong
converse was also proven under a positivity assumption on
the probability distribution under the alternative. Distributed
hypothesis testing under a zero-rate noiseless communication
constraint was introduced in [17], where a one-bit commu-
nication scheme indicating whether the observed sequence at
each encoder is typical or not was proposed. Subsequently,
the optimality of the one-bit scheme along with a strong
converse was established in [18] by leveraging the blowing-up
lemma. The trade-off between the type I and type II error-
exponents in the same setting under a positive and zero-rate
communication constraint was first explored in [25], where
inner bounds were established (see also [26], and [27]–[32]
for more recent progress and extensions).

In contrast to the above, analogous problems in quantum
settings have been much less explored. The only exception
that we are aware of is [33], which among other contribu-
tions, established a single-letter characterization of the Stein’s
exponent for testing against independence including a strong
converse. Here, we consider the first quantum analogue of the
problem studied in [17], [18]. We briefly compare our work
with [33]. While [33] treats the positive rate communication
constraint for testing against independence, we work in the
zero-rate setting allowing arbitrary marginals ρ̃A and ρ̃B . Also,
our proofs involve markedly different techniques from those
used in [33]. In particular, the converse proof in [33] relies
on quantum reverse-hypercontractivity, whereas we employ a
novel quantum version of the blowing-up lemma. Moreover,
the strong converse in [33] is shown for a classical-quantum
state ρAB , while our proof works for general ρAB .

B. Notation

Throughout, we consider the setting of a finite dimensional
Hilbert space for the systems involved. The set of density
operators (or quantum states) on Hilbert space of dimension
d, is denoted by Sd. Tr [·] signifies the trace operation. The
notation ≤ denotes the Löwner partial order in the context

1Strong converse here refers to the optimal Stein’s exponent being inde-
pendent of the constraint, ϵ ∈ (0, 1), on the type I error probability.



of operators, i.e., for Hermitian operators H1, H2, H1 ≤ H2

means that H2 − H1 is positive semi-definite. I denotes the
identity operator. For operators L1, L2, L1 ≪ L2 designates
that the support of L1 is contained in that of L2. For reals a, b,
a∧b := min{a, b} and a∨b = max{a, b}. For a finite discrete
set X , a positive operator-valued measure (POVM) indexed
by X is a set M = {Mx}x∈X such that Mx ≥ 0 for all x
and

∑
x∈X Mx = I . Such a POVM induces a measurement

channel (quantum to classical channel) specified by

M(ω) :=
∑
x∈X

Tr [Mxω]|x⟩⟨x|.

For composite systems, we indicate the labels of the sub-
systems involved as subscript or superscript wherever con-
venient, e.g., ρAB for the state of bipartite system AB. The
marginal ωA (resp. ωB) of a bipartite linear operator ωAB is
defined by taking partial trace with respect to B (resp. A).

II. MAIN RESULT

The next theorem which characterizes the Stein’s exponent
for the hypothesis test in (1) is our main result.

Theorem 1 (Single-letterization of Stein’s exponent) For any
ρAB , ρ̃AB = ρ̃A ⊗ ρ̃B and ϵ ∈ (0, 1),

θ(ϵ, ρAB , ρ̃AB) = D(ρA∥ρ̃A) + D(ρB∥ρ̃B) . (4)

Before we prove Theorem 1, we discuss a simple impli-
cation of it for testing against independence, in which case
ρ̃AB = ρA ⊗ ρB . Note that (4) implies that θ(ϵ, ρAB , ρA ⊗
ρB) = 0. To compare this with the performance in the
centralized setting, recall that the Stein’s exponent in the
latter case is equal to the mutual information evaluated with
respect to ρAB (see, e.g., [34], [35] for a composite hypothesis
testing version), which is positive except in the trivial case
ρAB = ρA ⊗ ρB . Hence, there is a strict gap between
the performance under zero-rate and centralized setting as
expected.

Proof. First, we show achievability of Stein’s exponent given
in (4), i.e., we establish that for all ϵ ∈ (0, 1],

θ(ϵ, ρAB , ρ̃AB) ≥ D(ρA∥ρ̃A) + D(ρB∥ρ̃B) .

Our proof relies on the concept of (relatively) typical projec-
tors considered in [19] (see the full version of our paper [36,
Proof of Theorem 2] for an alternative proof). For δ > 0, let
Pδ,n(ρ, σ) :=

∑
xn∈An(δ,ρ,σ)

Pxn denote the orthogonal pro-
jection considered in [19, Equation 10], where Pxn = |xn⟩⟨xn|
for an orthonormal eigenvector |xn⟩ of σ⊗n and

An(δ, ρ, σ) :=

{
xn : en(Tr [ρ log σ]−δ) ≤ Tr

[
σ⊗nPxn

]
≤ en(Tr [ρ log σ]+δ)

}
.

Consider

M̄AnBn

δ,n (ρAB , ρ̃AB) = M̂An

δ,n (ρA, ρ̃A)⊗ M̂Bn

δ,n (ρB , ρ̃B),

where

M̂δ,n(ρ, σ) = Pδ,n(ρ, σ)Pδ,n(ρ, ρ)Pδ,n(ρ, σ),

for density operators ρ and σ. Alice and Bob first performs
local measurements using binary outcome POVMs

MAn

n ={MAn

0 ,MAn

1 }:=
{
M̂An

δ,n (ρA, ρ̃A), IAn−M̂An

δ,n (ρA, ρ̃A)
}
,

MBn

n ={MBn

0 ,MBn

1 }:=
{
M̂Bn

δ,n (ρB , ρ̃B), IBn−M̂Bn

δ,n (ρB , ρ̃B)
}
,

respectively. The outcomes are sent to Charlie who decides in
favour of the null hypothesis if and only if both outcomes are
zero. We next evaluate the type I and type II error probability
achieved by this one-bit communication scheme. First, note
that for any commuting M1,M2 such that 0 ≤ M1,M2 ≤ I
and density operator σ, we have

0 ≤ Tr [σ(I −M1)(I −M2)]

= 1− Tr [σM1]− Tr [σM2] + Tr [σM1M2]. (5)

Applying (5) with M1 = M̂An

δ,n (ρA, ρ̃A) ⊗ IBn and M2 =

IAn ⊗M̂Bn

δ,n (ρB , ρ̃B), the type I success probability converges
to one as follows:

Tr
[
M̄AnBn

δ,n (ρAB , ρ̃AB)ρ
⊗n
AB

]
≥ Tr

[(
M̂An

δ,n (ρA, ρ̃A)⊗ IBn

)
ρ⊗n
AB

]
+Tr

[(
IAn ⊗ M̂Bn

δ,n (ρB , ρ̃B)
)
ρ⊗n
AB

]
− 1

= Tr
[
M̂An

δ,n (ρA, ρ̃A)ρ
⊗n
A

]
+Tr

[
M̂Bn

δ,n (ρB , ρ̃B)ρ
⊗n
B

]
− 1

→ 1.

In the above, the inequality follows from (5) and the
final step is due to Tr

[
M̂An

δ,n (ρA, ρ̃A)ρ
⊗n
A

]
→ 1 and

Tr
[
M̂Bn

δ,n (ρB , ρ̃B)ρ
⊗n
B

]
→ 1, which in turn follows from

[19, Lemma 4(4)] and is a consequence of the weak law of
large numbers. Hence, the type I error probability vanishes
asymptotically. Moreover, the type II error probability can be
upper bounded as

Tr
[
M̄AnBn

δ,n (ρAB , ρ̃AB)(ρ̃
⊗n
A ⊗ ρ̃⊗n

B )
]

= Tr
[
M̂An

δ,n (ρA, ρ̃A)ρ̃
⊗n
A

]
Tr

[
M̄Bn

δ,n (ρB , ρ̃B)ρ̃
⊗n
B

]
≤ e−n(D(ρA∥ρ̃A)+D(ρB∥ρ̃B)−4δ),

where the last inequality follows due to [19, Equation 20].
This implies that

θ(ϵ, ρAB , ρ̃AB) ≥ D(ρA∥ρ̃A) + D(ρB∥ρ̃B)− 4δ,

for all ϵ ∈ (0, 1]. Since δ > 0 is arbitrary, the claim follows.

Next we show the converse, i.e.,

θ(ϵ, ρAB , ρ̃AB) ≤ D(ρA∥ρ̃A) + D(ρB∥ρ̃B) . (6)

First, consider ρAB is such that ρA ⊗ ρB ≪̸ ρ̃A ⊗ ρ̃B . This
implies that either ρA ≪̸ ρ̃A or ρB ≪̸ ρ̃B . In either case,
D(ρA∥ρ̃A)+D(ρB∥ρ̃B) = ∞. Hence, (6) holds trivially. Next,
consider that ρA ⊗ ρB ≪ ρ̃A ⊗ ρ̃B . We will use the following
non-asymptotic strong-converse which implies (6).



Lemma 1 (Non-asymptotic strong converse) Let ρ̃AB = ρ̃A⊗
ρ̃B , (rn)n∈N be a non-negative sequence and 0 ≤ ϵ < 1. Then

sup
(Fn,Gn,Tn):αn(Fn,Gn,Tn)≤ϵ

− 1

n
log βn(Fn,Gn, Tn)

≤ max
Mn∈PLOn

min
ρ̂n
AB∈Dn(ρAB)

D
(
Mn(ρ̂

n
AB)

∥∥Mn(ρ̃
⊗n
AB)

)
n(1− 2e−2r2n)

+
2

n
log γ̄n(ϵn, rn) +

1

n(1− 2e−2r2n)
, (7)

where PLOn is the class of all rank-one local projective
measurements, ϵn = (1 − ϵ)/|Wn|2, Dn(ρAB) :=

{
ρ̂nAB :

ρ̂nA = ρ⊗n
A , ρ̂nB = ρ⊗n

B

}
,

γ̄n(ϵn, rn) :=
2(dA ∨ dB)

⌈ln(ϵn,rn)⌉
∑⌈ln(ϵn,rn)⌉

l=1

(
n
l

)
ϵ
(
µ̄min(ρ̃AB)

)⌈ln(ϵn,rn)⌉ , (8)

ln(ϵn, rn) :=
√
n
(√

−0.5 log (0.5ϵn) + rn

)
, (9)

µ̄min(ρ̃AB) := min
x,x̄∈X+×X̄+

⟨xx̄|ρ̃AB |xx̄⟩, (10)

dA (resp. dB) is the dimension of the Hilbert space associated
with A (resp. B), and {|x⟩}x∈X+ (resp. {|x⟩}x∈X̄+

) is the
set of orthonormal eigenvectors corresponding to positive
eigenvalues in the spectral decomposition of ρA (resp. ρB).

To prove (6) from (7), we first show that

lim
n→∞

max
Mn∈PLOn

min
ρ̂n
AB

∈Dn(ρAB)

D
(
Mn(ρ̂

n
AB)

∥∥Mn(ρ̃
⊗n
AB)

)
n(1− 2e−2r2n)

= D(ρA∥ρ̃A) + D(ρB∥ρ̃B) . (11)

To see this, note that for any Mn = PAn

n ⊗PBn

n ∈ PLO and
ρ̂nAB ∈ Dn(ρAB), we have

D
(
Mn(ρ̂

n
AB)

∥∥Mn(ρ̃
⊗n
AB)

)
= D(Mn(ρ̂

n
AB)∥Mn(ρ̂

n
A ⊗ ρ̂nB))+D

(
PAn

n (ρ̂nA)
∥∥∥PAn

n (ρ̃⊗n
A )

)
+ D

(
PBn

n (ρ̂nB)
∥∥∥PBn

n (ρ̃⊗n
B )

)
=D(Mn(ρ̂

n
AB)∥Mn(ρ̂

n
A ⊗ ρ̂nB))+D

(
PAn

n (ρ⊗n
A )

∥∥∥PAn

n (ρ̃⊗n
A )

)
+ D

(
PBn

n (ρ⊗n
B )

∥∥∥PBn

n (ρ̃⊗n
B )

)
,

where the last equality follows because ρ̂nAB ∈ Dn(ρAB)
implies that ρ̂nA = ρ⊗n

A and ρ̂nB = ρ⊗n
B . Taking minimum

over ρ̂nAB ∈ Dn(ρAB), we obtain

min
ρ̂n
AB∈Dn(ρAB)

D
(
Mn(ρ̂

n
AB)

∥∥Mn(ρ̃
⊗n
AB)

)
=D

(
PAn

n (ρ⊗n
A )

∥∥∥PAn

n (ρ̃⊗n
A )

)
+D

(
PBn

n (ρ⊗n
B )

∥∥∥PBn

n (ρ̃⊗n
B )

)
,

because relative entropy is non-negative and hence the min-
imum is achieved by ρ̂nAB = ρ̂nA ⊗ ρ̂nB = ρ⊗n

A ⊗ ρ⊗n
B .

Normalizing by n and maximizing over Mn ∈ PLOn leads
to

max
Mn∈PLOn

min
ρ̂n
AB∈Dn(ρAB)

D
(
Mn(ρ̂

n
AB)

∥∥Mn(ρ̃
⊗n
AB)

)
n

=
DALLn

(
ρ⊗n
A

∥∥ρ̃⊗n
A

)
n

+
DALLn

(
ρ⊗n
B

∥∥ρ̃⊗n
B

)
n

,

since measured relative entropy with respect to all measure-
ments is same as over all orthogonal rank-one projective
measurements [37]. Taking limit n → ∞ and using rn → ∞,
(11) follows since for any density operators ρ, σ (see e.g. [38])

lim
n→∞

DALLn (ρ
⊗n∥σ⊗n)

n
= D(ρ∥σ) . (12)

Having shown (11), we next choose rn such that the last
two terms in (7) vanishes. The last term converges to zero
for any rn → ∞. Hence, we only need to ensure that
log γ̄n(ϵn, rn)/n → 0 when ρA ⊗ ρB ≪ ρ̃AB . Let rn = n1/3.
Note that ρA⊗ρB ≪ ρ̃AB implies that µ̄min(ρ̃AB) > 0. Using(
n
l

)
≤ (ne/l)l, we have

γ̄n(ϵn, rn) :=
2(dA ∨ dB)

⌈ln(ϵn,rn)⌉
∑⌈ln(ϵn,rn)⌉

l=1

(
n
l

)
ϵn
(
µ̄min(ρ̃AB)

)⌈ln(ϵn,rn)⌉
≤ 2(dA ∨ dB)

⌈ln(ϵn,rn)⌉⌈ln(ϵn, rn)⌉(ne)⌈ln(ϵn,rn)⌉

ϵn
(
µ̄min(ρ̃AB)⌈ln(ϵn, rn)⌉

)⌈ln(ϵn,rn)⌉ .

For the given choice of rn, ln(ϵn, rn) = o(n) (see (9)) since
log |Wn| = o(n) due to (2). Moreover, for ϵn = (1−ϵ)/|Wn|2,
log ϵn = o(n). Consequently, log

(
γ̄n(ϵn, rn)

)
/n → 0. From

the above, (6) follows from (7) by taking limit superior w.r.t.
n, and using (11).

Due to space constraints, we will only provide a sketch of
the proof of Lemma 1. Full details can be found in [36, Proof
of Lemma 13].

1) Sketch of Proof of Lemma 1: A key ingredient of
the proof is the following bipartite quantum analogue of the
blowing-up lemma [21]–[23], which at a high-level expresses
a concentration of measure phenomenon.

Lemma 2 (Bipartite version of quantum blowing-up lemma)
Suppose 0 < ϵn ≤ 1, 0 ≤ MAn

n × MBn

n ≤ IAnBn , and
ρAB ∈ SdAdB

be such that Tr
[
ρ⊗n
A MAn

n

]
∧Tr

[
ρ⊗n
B MBn

n

]
≥

ϵn for all n ∈ N. Then, for any σAB ∈ SdAdB
and non-

negative sequence (rn)n∈N, there exists a projector 0 ≤
P+An

n ⊗ P+Bn

n ≤ IAnBn such that

Tr
[
ρ⊗n
A P+An

n

]
∧ Tr

[
ρ⊗n
B P+Bn

n

]
≥ 1− e−2r2n , (13a)

Tr
[
σ⊗n
AB

(
P+An

n ⊗ P+Bn

n

)]
≤ Tr

[(
MAn

n ⊗MBn

n

)
σ⊗n
AB

]
× γ̄2

n(ϵn, rn), (13b)

where γ̄n(ϵn, rn) is as given in (8) with σAB in place of ρ̃AB .

We omit the proof of Lemma 2, which can be found in [36,
Proof of Lemma 15].

Proceeding with the proof of Lemma 1, we may assume
without loss of generality that Vn = Bn and GBn→V n

n =
IBn→Bn

. Let FAn→Wn
n be an arbitrary encoder (CPTP map),

σWnBn :=
(
FAn→Wn

n ⊗ IBn→Bn)
(ρ⊗n

AB),

σ̃WnBn :=
(
FAn→Wn

n ⊗ IBn→Bn)
(ρ̃⊗n

AB),

and Tn = {MWnBn , IWnBn − MWnBn} be any binary out-
come POVM. Consider the spectral decomposition σ̃Wn

=



∑
wn∈Wn

λwn
Pwn

, where {Pwn
}wn∈Wn

is a set of orthogonal
rank-one projectors such that

∑
wn∈Wn

Pwn
= IWn

. Let
ΠWn

(·) denote the pinching map2 (see e.g. [38]) w.r.t. these
projectors, i.e.,

ΠWn

(
ω
)
=

∑
wn∈Wn

PwnωPwn .

The key idea behind the proof is to use pinching map to
construct a new test T̄n = {M̄WnBn , IWnBn − M̄WnBn}
satisfying two properties. Firstly, M̄WnBn can be written as
a separable sum, i.e., sum of tensor products of positive
operators with the number of terms in the sum scaling at
zero-rate with n. Secondly, the pinching operation is such that
the error probabilities achieved by T̄n are not too different
(in the exponent) from those achieved by Tn. The separable
decomposition of M̄WnBn enables leveraging the bipartite
version of the quantum blowing-up lemma to obtain a new
POVM that achieves a vanishing type I error probability with a
negligible decrease in the type II error exponent. Then, relating
the error probabilities achieved by the modified and original
test leads to the desired claim.

Define

M̄WnBn :=
(
ΠWn ⊗ IBn→Bn)(

MWnBn

)
=

∑
wn∈Wn

(
Pwn

⊗ IBn

)
MWnBn

(
Pwn

⊗ IBn

)
. (14)

From the pinching inequality [20], we have

M̄WnBn ≥ MWnBn

|Wn|
. (15)

Then, αn(Fn,Gn, Tn) ≤ ϵ and (15) implies

Tr
[
σWnBnM̄WnBn

]
≥ Tr [σWnBnMWnBn ]

|Wn|
≥ 1− ϵ

|Wn|
. (16)

Next, observe that M̄WnBn can be written as

M̄WnBn =
∑

wn∈Wn

PWn
wn

⊗MBn

wn
, (17)

for some {MBn

wn
}wn∈Wn such that MBn

wn
≥ 0 for all wn ∈ Wn

and
∑

wn
MBn

wn
= MBn . This implies that

Tr
[
σWnBnM̄WnBn

]
=
∑
wn

Tr
[(
MAn

wn
⊗MBn

wn

)
ρ⊗n
AB

]
, (18)

where MAn

wn
:= F†Wn→An

n

(
PWn
wn

)
and F†Wn→An

n is the
adjoint map of FAn→Wn

n . Note that 0 ≤ MAn

wn
≤ IAn

and
∑

wn∈Wn
MAn

wn
= IAn since F†Wn→An

n is a completely
positive unital map, being the adjoint of a CPTP map (see e.g.
[38]). From (16) and (18), we obtain∑

wn∈Wn

Tr
[(
MAn

wn
⊗MBn

wn

)
ρ⊗n
AB

]
≥ 1− ϵ

|Wn|
.

2Note that we perform pinching w.r.t. rank-one orthogonal projectors which
is slightly different from the usual pinching operation, where the projectors
are formed by combining eigenprojections corresponding to same eigenvalues.

Hence, there exists some w⋆ ∈ Wn such that

Tr
[
ρ⊗n
AB

(
MAn

w⋆ ⊗MBn

w⋆

)]
≥ 1− ϵ

|Wn|2
.

Since 0 ≤ MAn

w⋆ ≤ IAn and 0 ≤ MBn

w⋆ ≤ IBn ,

Tr
[
ρ⊗n
A MAn

w⋆

]
∧ Tr

[
ρ⊗n
B MBn

w⋆

]
≥ 1− ϵ

|Wn|2
.

By Lemma 2, there exists 0 ≤ P+An

n ≤ IAn and 0 ≤ P+Bn

n ≤
IBn such that

Tr
[
ρ⊗n
A P+An

n

]
∧ Tr

[
ρ⊗n
B P+Bn

n

]
≥ 1− e−2r2n , (19)

and Tr
[
ρ̃⊗n
AB

(
P+An

n ⊗ P+Bn

n

)]
≤ γ̄2

n(ϵn, rn) Tr
[(
MAn

w⋆ ⊗MBn

w⋆

)
ρ̃⊗n
AB

]
, (20)

where γ̄n(ϵn, rn) is as defined in (8) with ϵn := (1−ϵ)/|Wn|2.
Since ρ̂nA = ρ⊗n

A and ρ̂nB = ρ⊗n
B for any ρ̂nAB ∈ Dn(ρAB), we

have from (19) that

min
ρ̂n
AB∈Dn(ρAB)

Tr
[
ρ̂nAP

+An

n

]
∧ Tr

[
ρ̂nBP

+Bn

n

]
≥ 1− e−2r2n .

This implies that for any ρ̂nAB ∈ Dn(ρAB),

Tr
[
ρ̂nAB(P

+An

n ⊗ P+Bn

n )
]

(a)

≥ Tr
[
ρ̂nAB(P

+An

n ⊗ IBn)
]
+Tr

[
ρ̂nAB(IAn ⊗ P+Bn

n )
]
− 1

= Tr
[
ρ̂nAP

+An

n

]
+Tr

[
ρ̂nBP

+Bn

n

]
− 1

≥ 1− 2e−2r2n , (21)

where (a) used (5). Using (20) and ΠWn(σ̃Wn) = σ̃Wn , we
can further show that

Tr
[
ρ̃⊗n
AB

(
P+An

n ⊗ P+Bn

n

)]
≤ γ̄2

n(ϵn, rn)βn(Fn,Gn, Tn).

Consider the local POVM M+
n := MAn

+ ⊗ MBn

+ , where
MAn

+ := {P+An

n , I − P+An

n } and MBn

+ := {P+Bn

n , I −
P+Bn

n }. Using (21) and the above inequality, it is possible
via an argument involving the log-sum inequality to re-
late βn(Fn,Gn, Tn) to D

(
M+

n (ρ̂
n
AB)

∥∥M+
n (ρ̃

⊗n
AB)

)
, eventually

leading to (7). Due to space constraints, we omit the details
and refer to [36, Proof of Lemma 13].

III. CONCLUDING REMARKS

We derived a single-letter expression for the Stein’s expo-
nent of a distributed quantum hypothesis testing problem under
zero-rate noiseless communication constraint when the state
under the alternative is of product form. When at least one of
the parties is constrained to communicate classical information
to the tester at zero-rate, a multi-letter characterization of this
exponent in terms of max-min optimization of regularized
measured relative entropy can be established [36]. Looking
ahead, it would be worthwhile to investigate more general
instances where an efficiently computable expression for the
Stein’s exponent can be derived. Also of interest is to explore
the trade-offs between the (Hoeffding’s) exponents of both the
type I and type II error probabilities as well as a computable
characterization of the Chernoff’s exponent.
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