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This technical document is accompanying the Amazon Braket Jupyter notebook carrying
the same name. Here, we provide the necessary formal security definitions as well as full
security and complexity proofs. As our main technical result, we construct and implement a
quantum-proof two-source extractor with quasi-linear runtime for the efficient distillation of
random bits from two weak sources of randomness generated by noisy quantum processing
units. For realistic parameters, the construction works for input sizes from around 102 to
107 bits. Crucially, the output bits remain information-theoretically random even when the
adversary has knowledge of the noise occurring on the quantum processing units.
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I. OVERVIEW

The classical theory of pseudorandonmess [22] allows to distil information-theoretically secure
random bits from two independent sources of randomness whenever they have sufficiently high
entropy [14]. It is thereby crucial for reasonable high throughput rates that the corresponding
classical algorithms — called two-source extractors — have complexity linear in the input size [6, 8].1

Following the Amazon Braket Jupyter notebook [2], we propose to program two separate quan-
tum processing units from different suppliers in Amazon Braket to supply two streams of weak

1 The underlying process to create these weak sources of randomness can either be classical or quantum.
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randomness. With current noisy quantum technologies, each source on its own then typically has
some bias and is thus not particularly close to being fully random. As a consequence, any knowl-
edge of the noise occurring renders the randomness insecure. However, under minimal physical
assumptions, employing classical post-processing based on strong two-source extractors results in
random output bits that are information-theoretically secure. The output then even remains ran-
dom when revealing one of the two imperfect input streams. As such, the two suppliers of the
quantum processing units can only break the randomness generation scheme when collaborating.2

The quantum part of the randomness generation protocol consists of the following most simple
circuit:

• Initialize n physical qubits in the zero state |0〉⊗n

• Apply the tensored Hadamard gate H⊗n leading to n physical qubit states 1√
2

(
|0〉+ |1〉

)
• Measure each qubit in the computational basis

Doing this on two separate quantum processing units leads to two independent n-bit strings that
are somewhat but not fully random due to the bias present in the quantum hardware. One then
needs to model the noise occurring via benchmarking and find lower bounds on the entropy of the
sources — conditioned on knowledge of the noise model.

For the classical post-processing, we implement a strong two-source extractor based on modified
Toeplitz matrices [8] with quasi-linear complexity O(n log n) in the input size n. For sources with
linear entropy rate n ·αi for i = 1, 2 the m output bits of the extractor are information-theoretically
random with security parameter ε ∈ (0, 1] for

m = dn · (α1 + α2 − 1) + 1− 2 log (1/ε)e . (1)

This allows the robust generation of randomness on quantum computers as long as we have α1 +
α2−1 > 0 for the sources — which is easy to achieve given the fidelities of state-of-the-art quantum
processing units as provided in Amazon Braket.

An implementation of the proposed protocol together with high level explanations can be found
in the Amazon Braket Jupyter notebook [2]. In the remainder of this note, we give in Section II
formal security definitions, discuss in Section III the security and complexity of our randomness
extractor, and then discuss in Section IV how to model noisy quantum processing units to find
lower bounds on the entropy present in the raw bits of randomness generated. We conclude in
Section V with a comparison of our work with previous results in the literature.

II. SECURITY DEFINITIONS

For the theory of pseudo-randomness the relevant entropy measure is the so-called min-entropy.
We use the standard definition of the quantum conditional min-entropy [13, Definition 1 & Theorem
1], enabling us to work with classical sources of randomness correlated to quantum systems.

Definition 1 (Min-entropy). For classical-quantum states ρNQ =
∑

x px|x〉〈x|N ⊗ ρxQ with prob-
ability distribution {px} and ensemble of quantum states {ρxQ}, the conditional min-entropy of N
given Q is defined as

Hmin(N |Q)ρ = − log max
0≤Mx≤1∑
xM

x=1

∑
x∈X

pxTr
[
Mx
Qρ

x
Q

]
. (2)

2 One still has to trust the encryption in the Amazon Braket.
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For trivial systems Q, we use the notation Hmin(N)P for the min-entropy of the probability distri-
bution PN .

The standard definition of two-source randomness extractors is as follows [17, Definition 1].

Definition 2 (Two-source extractor). Let n1, n2 ∈ N, k1 ∈ [0, n1], k2 ∈ [0, n2], m ∈ N, and
ε ∈ [0, 1]. A (n1, k1, n2, k2,m, ε) two-source extractor is defined as a function Ext : {0, 1}n1 ×
{0, 1}n2 → {0, 1}m such that for independent N1, N2 with Hmin(N1) ≥ k1 and Hmin(N2) ≥ k2, we
have

1

2
‖Ext(N1, N2)− UM‖1 ≤ ε with UM the uniform random variable on m bits (3)

and ‖ · ‖1 denoting the total variational distance. The function Ext is defined to be strong in the
input i = 1, 2 when

1

2
‖Ext(N1, N2)− UM ◦Ni‖1 ≤ ε . (4)

We refer to n1, n2 as the input length of the first and second source, resp., to m ∈ N as the output
length, and to ε ∈ [0, 1] as the security parameter.

Following Arnon-Friedman et al. [1], this security criteria extends to adversaries holding quan-
tum information Q1Q2 about the sources N1 and N2, respectively. In their work, Arnon-Friedman
et al. discuss general Markov sources (also see [4] for alternative models), but for us it is sufficient
to restrict to product sources — as first mentioned in [11].

Definition 3. A classical-classical-quantum-quantum state ρN1N2Q1Q2 is a product source if

ρN1N2Q1Q2 = ρN1Q1 ⊗ ρN2Q2 . (5)

The standard, composable security criteria [16] in the presence of quantum adversaries is then
as follows [1, Definition 8].

Definition 4 (Quantum-proof two-source extractor). Let n1, n2 ∈ N, k1 ∈ [0, n1], k2 ∈ [0, n2],
m ∈ N, and ε ∈ [0, 1]. A product quantum-proof (n1, k1, n2, k2,m, ε) two-source extractor is defined
as a function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m such that for product sources ρN1N2Q1Q2 with
Hmin(N1|Q1)ρ ≥ k1 and Hmin(N2|Q2)ρ ≥ k2, we have

1

2

∥∥ρExt(N1,N2)Q1Q2
− τM ⊗ ρN1N2

∥∥
1
≤ ε (6)

with ρExt(N1,N2)Q = (Ext(N1, N2) ⊗ IQ)(ρN1N2Q), τM the fully mixed state on C2m, and ‖ · ‖1
denoting the metric induced by the Schatten one-norm. The function Ext is defined to be product
quantum-proof strong in the i = 1, 2 input when

1

2

∥∥ρExt(N1,N2)NiQ1Q2
− τM ⊗ ρNiQ1Q2

∥∥
1
≤ ε . (7)

Moreover, when above criteria is only known to hold for classical Q1Q2, then the function Ext is
called product classical-proof two-source extractor.

III. RANDOMNESS EXTRACTOR CONSTRUCTION

We employ a randomness extractor construction based on modified Toeplitz matrices [8]. The
novelty in our analysis is to prove the product quantum-proof strong property (Section III A), as
well as to give an explicit implementation with complexity quasi-linear in the input size (Section
III B).
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A. Security proof

Proposition 1. For n,m ∈ N and y = (y1−m, . . . , y0, . . . , yn−m−1) ∈ {0, 1}n−1, let

T (y) =


y0 y1 . . . yn−m−1

y−1 y0 . . . yn−m−2
...

...
...

...
y1−m y2−m . . . yn−2m

 (8)

be the m× (n−m) normal Toeplitz matrix, i.e., T (y) = yj−i. Then, the function ExtT : {0, 1}n ×
{0, 1}n−1 → {0, 1}m defined via the matrix-vector multiplication

(x, y) 7→ z = ExtT (x, y) = x(T (y)|1m)T (9)

is a product quantum-proof (n, k1, n− 1, k2,m, ε) two-source extractor whenever

m ≤ b(k1 + k2 − n) + 1− 2 log (1/ε)c . (10)

Moreover, ExtT is then also product quantum-proof strong in the source of size {0, 1}n−1.

Notice that these are the exact same parameters as in the case of trivial quantum systems Q,
which is in contrast to other constructions that are known to be quantum-proof (see, e.g., [1, 6]).
Namely, the threshold for our construction to work is that the difference between (k1 + k2) and n
is positive.3 Then, roughly this difference can be extracted.

In other words, for fixed desired output size m and linear min-entropy rates ki = α · n for
i = 1, 2, we need two input bit strings with

n =

⌊
m− 1 + 2 log(1/ε)

2α− 1

⌋
. (11)

We refer to the Amazon Braket Jupyter notebook [2] for a numerical example that showcases the
excellent performance for small input sizes.

Proof of Proposition 1. The following argument can be seen as a fully quantum version of the
development presented in [8, Section VII]. For ρN2Q2 =

∑
y py|y〉〈y|N2 ⊗ ρ

y
Q2

, we estimate

‖(ExtN1N2→MN2 ⊗ IQ1Q2)(ρN1Q1 ⊗ ρN2Q2)− τM ⊗ ρQ1 ⊗ ρN2Q2‖1
=
∑
y

py

∥∥∥(ExtyN1→M ⊗ IQ1Q2)
(
ρN1Q1 ⊗ ρ

y
Q2

)
− τM ⊗ ρQ1 ⊗ ρ

y
Q2

∥∥∥
1

(12)

≤ 2
m
2 ·
∑
y

py

(
Tr
[(

(ρQ1 ⊗ ρ
y
Q2

)−1/4
(
(ExtyN1→M ⊗ IQ1Q2)(ρN1Q1 ⊗ ρ

y
Q2

)

− τM ⊗ ρQ1 ⊗ ρ
y
Q2

)(ρQ1 ⊗ ρ
y
Q2

)−1/4
)2]) 1

2

(13)

≤ 2
m
2 ·

√√√√∑
y

Tr

[
pyρ

y
Q2
⊗
(
ρ
−1/4
Q1

((
ExtyN1→M ⊗ IQ1

)
(ρN1Q1)− τM ⊗ ρQ1

)
ρ
−1/4
Q1

)2
]
, (14)

3 Proposition 1 can be extended to general Markov sources by employing the steps in [1, Section 4.2] together with
[1, Lemma 6]. This will only occur in a relatively small parameter loss.
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where we used the Hoelder type inequality from [19, Lemma 4] in the first inequality and Jensen’s
inequality for the square root function in the second inequality. Now, by the definition of the
conditional min-entropy in the form of [13, Theorem 1] we have for all y = {1, . . . , n− 1} and some
quantum state σQ2 that

pyρ
y
N2
≤ 2−Hmin(N2|Q2)ρ · σQ2 . (15)

Thus, we have

‖(ExtN1N2→MN2 ⊗ IQ1Q2)(ρN1Q1 ⊗ ρN2Q2)− τM ⊗ ρQ1 ⊗ ρN2Q2‖1

≤ 2
1
2

(m−k2) · 2
n−1
2 ·

√√√√∑
y

1

2n−1
· Tr

[(
ρ
−1/4
Q1

((
ExtxN1→M ⊗ IQ1

)
(ρN1Q1)− τM ⊗ ρQ1

)
ρ
−1/4
Q1

)2
]
(16)

= 2−
1
2

(k2−n−m+1) ·

√
Tr

[(
ρ
−1/4
Q1

((ExtN1N2→MN2 ⊗ IQ1) (ρN1Q1 ⊗ τN2)− τMN2 ⊗ ρQ1) ρ
−1/4
Q1

)2
]

︸ ︷︷ ︸
≤ (∗)

.

(17)

Notice that for the (∗) term the input on N2 is now uniform — it is acting as a so-called seed — and
this directly allows to apply that modified Toeplitz matrices define quantum-proof two-universal

hash functions [8, Appendix B.B] (also see [21] and references therein). As such, we have (∗) ≤ 2−
k1
2

and we arrive at

‖(ExtN1N2→MN2 ⊗ IQ1Q2)(ρN1Q1 ⊗ ρN2Q2)− τM ⊗ ρQ1 ⊗ ρN2Q2‖1 ≤ 2−
1
2

(k1+k2−n−m+1) . (18)

Equivalently, we can choose the output size as

m = b(k1 + k2 − n) + 1− 2 log (1/ε)c , (19)

which is what we set out to prove.

B. Implementation

The a priori complexity of the function z = ExtT (x, y) = x(T (y)|1m)T is O(n2), which is good
for block sizes up to n = 104. To go to higher block sizes up to n = 107, we now show that
the complexity can be brought down to the quasi-linear complexity O(n log(n)) by means of the
Discrete Fourier Transform (DFT) via the Fast Fourier Transform (FFT) denoted as F . This is
achieved in several steps:

• Recall the definitions y = (y1−m, . . . , y0, . . . , yn−m−1) ∈ {0, 1}n−1 and

T (y) =


y0 y1 . . . yn−m−1

y−1 y0 . . . yn−m−2
...

...
...

y1−m y2−m . . . yn−2m

 . (20)
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• We rewrite the transpose of the function of interest as

zT = (T (y)|1m)xT = T (y)xT + xT (21)

for x = (x0, x1, . . . , xn−m−1) ∈ {0, 1}n−m and x = (xn−m, xn−m+1, . . . , xn−1) ∈ {0, 1}m.
The addition has complexity O(m) and as such it remains to analyse the matrix-vector
multiplication T (y)xT .

• We notice that the normal Toeplitz matrix T (y) can be completed to a (n−1)×(n−1) square
Toeplitz matrix T (y) as T (y)ij = yj−i via the extended vector y = (y2−n, . . . , y0, . . . , yn−2) ∈
{0, 1}2n−3 with entries

yi =

{
yi for i ∈ {1−m, . . . , 0, . . . , n−m− 1}
0 else.

(22)

• We further embed the square Toeplitz matrix T (y) into the (2n − 3) × (2n − 3) circulant
matrix C(y) with the first row

(y0, y1, . . . , yn−2|y2−n, . . . , y−1) (23)

and all other entries populated according to the rule of circulant matrices. In particular,
this leads to the first column given by the transpose of the vector

y = (y0, y−1, . . . , y2−n|yn−2, . . . , y1) . (24)

We note that the upper left block of the (2n− 3)× (2n− 3) circulant matrix C(y) is given
by the (n− 1)× (n− 1) square Toeplitz matrix T (y), in which again the upper left block is
given by the m× (n−m) normal Toeplitz matrix T (y).

• The matrix-vector multiplication T (y)xT is then rewritten as

T (y)xT = (1m|02n−m−3)C(y)(x, 0, . . . , 0)T , (25)

where 02n−m−3 denotes the (02n−m−3)× (02n−m−3) zero matrix and the number of zeroes in
the last term is n+m− 3. Since the left multiplication with (1m|02n−m−3) just corresponds
to throwing away the last 2n − m − 3 values, it remains to analyse the complexity of the
matrix-vector multiplication C(y)(x, 0, . . . , 0)T .

• Since C(y) is a circulant matrix, it is taken by the DFT to diagonal form via

FC(y)F−1 = diag (F [y]) (26)

and we can write

C(y)(x, 0, . . . , 0)T = F−1
[
F
[
yT
]
∗ F

[
(x, 0, . . . , 0)T

]]
, (27)

where ∗ denotes the Hadamard product.

• Since the Hadamard product has complexity O(n) and the DFT is implemented via the FFT
in complexity O(n log n), this leaves an overall complexity of O(n log n) for computing the
output as

z = ExtT (x, y) = F−1
[
F [y] ∗ F [(x, 0, . . . , 0)]

]( 1m
02n−m−3

)
+ x . (28)
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IV. MODELLING NOISY QUANTUM DEVICES

A. Setting

In case the quantum processing units perform perfectly for the protocol described in Section I,
there is no need for classical post-processing by means of randomness extractors. However, when-
ever the quantum processing units are noisy and faulty, we need to model the effective state
preparation and measurements appropriately to find a lower bound on the min-entropy of the raw
bits of randomness created before the classical post-processing. Importantly, we do not directly
analyse the min-entropy of the sources, but rather consider the min-entropy of the sources condi-
tioned on all the information that is available in principle given the laws of quantum mechanics
[7]. This ensures that the output bits become truly unpredictable, even when an adversary has
access to the noise occurring on the quantum processing units. That is, the output is random even
conditioned on the noise and is thus exclusively and freshly generated from the quantum resources.

Ideally, the circuit of our quantum random number generator creates n copies of the pure state

ψA = |ψ〉〈ψ|A with |ψ〉A =
1√
2

(|0〉A + |1〉A) (29)

followed by the n-fold application of the projective measurementM = {|0〉〈0|A, |1〉〈1|A}. However,
in practice the state to start with is rather given by some imperfect mixed state ρA only close to
ψA and the measurement is given by some imperfect two-outcome POVM N = {N, 1 − N} only
close to M for some small approximation parameter. Hence, restricting to one qubit for now, the
imperfect post-measurement probability distribution QX = NA→X(ρA) is only close to the desired
uniform distribution (0.5, 0.5) =MA→X(ψA).

At first, we might then think of directly usingQX with the corresponding min-entropyHmin(X)Q
as the input for randomness extraction. However, this fails to take into account that some infor-
mation about Q has leaked via the noise into the environment. In order to endow the adversary
with the maximal amount of leakage available, we need to purify the imperfect input on R and
write the imperfect POVM via its Naimark extension as a projective measurement on a combined
larger system AE. The min-entropy of the post-measurement distribution X conditioned on these
purifying quantum systems RE is then the relevant measure of randomness. This is detailed in
the following sections by means of concrete error models.

B. Characterization

For a given quantum processing unit, the supplier typically publishes some noise specification
with it. This includes both the noise characterization of state preparation as well as the read-
out measurements. If such specifications are not available, there is a wide range of theoretical
benchmarking tools available (see [12] and references therein). However, when no information at
all on the inner workings of the quantum processing unit are available, it is in general inefficient to
benchmark the device properly. The reason being that it is a priori unclear what part of the noise
observed stems from noisy state preparation and what part from the noisy read-out measurements.
Nevertheless, different methods from so-called self-consistent tomography are available (see [3, 18]
and references therein). These techniques are beyond the scope of our work, but luckily we do not
need a full characterization of the statistics of the source. Rather, for the randomness extractor
to work, we only need to provide a lower bound on the min-entropy of the source. That is, it is
sufficient to give a conservative upper bound on the noise strength.

For the state preparation step via Hadamard gates, the typical noise in quantum architectures
is symmetric, depolarizing noise of strength λ ∈ [0, 1]. This takes the intended pure state vector
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|ψ〉A = 1√
2

(|0〉A + |1〉A) to some quantum state

ρA(λ) =
1

2

(
|0〉〈0|A + (1− λ)|0〉〈1|A + (1− λ)|1〉〈0|A + |1〉〈1|A

)
. (30)

Now, the sensitive part for randomness generation is the noise affecting the measurement device.
As such, we present in Appendix A some simple statistical methods on how to benchmark mea-
surement devices with only noisy state preparation available. We note that instead of the ideal
measurement device given by the POVM M = {|0〉〈0|A, |1〉〈1|A}, the typical noise measurement
device is described by the POVM N (µ) = {1A − µ|1〉〈1|A, µ|1〉〈1|A} with some bias µ ∈ (0, 1) to
reading-out the basis state |0〉〈0|A. To keep the presentation simple, we proceed with this form
N (µ) = {1A − µ|1〉〈1|A, µ|1〉〈1|A}, leading to the post-measurement probability distribution(

q0 = 1− µ

2
, q1 =

µ

2

)
instead of the uniform distribution

(
p0 =

1

2
, p1 =

1

2

)
. (31)

Notice that this form on its own is independent of the parameter λ, as depolarizing noise is uniform.

C. Bounding min-entropy

The imperfect distribution observed then has min-entropy

Hmin(X)Q = 1− logµ ≤ 1 . (32)

However, as argued previously this is not the relevant quantity for secure randomness extraction.
Rather, we need to model the conditional min-entropy of the post-measurement probability distri-
bution X given the purifying quantum registers RE of the state ρA(λ) and measurement process
NA→X(µ), respectively.

The detailed modelling is as follows: The mixed state ρA(λ) is extended to the pure state ρAR(λ)
via its eigenvalues and corresponding eigenvectors. The imperfect measurement N (µ) can, e.g., be
written as a projective measurement on AE1 with

N = {|0〉〈0|A ⊗ |0〉〈0|E1 , |1〉〈1|A ⊗ |1〉〈1|E1} (33)

acting on the additional input state σE1(µ) = (1− µ)|0〉〈0|E1 + µ|1〉〈1|A. The latter is then again
purified as

|σ(µ)〉E1E2 =
√

1 + µ|0〉E1 ⊗ |0〉E2 −
√
µ|1〉E1 ⊗ |1〉E2 . (34)

Consequently, the relevant classical-quantum state to consider becomes

ωXRE2(λ, µ) =
(
NAE1→X ⊗ IRE2

)(
ρAR(λ)⊗ σE1E2(µ)

)
(35)

with corresponding conditional min-entropy Hmin(X|RE2)ω. Note that we have

Hmin(X|RE2)ω ≤ Hmin(X)Q (36)

with the gap typically being strict. Furthermore, in contrast to Hmin(X)Q, the term Hmin(X|RE2)ω
now also depends on λ. Even though the conditional min-entropy as given in Definition 1 does
not have a closed form expression, the quantity Hmin(X|RE2)ω is computed efficiently via a semi-
definite program (sdp). This is done for numerical examples in the accompanying Amazon Braket
Jupyter notebook [2].
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It is then also easily checked by inspection that the conditional min-entropy is monotone in
the noise parameters λ, µ and hence it is in practice indeed sufficient to choose a conservative
estimate for the noise strength λ, µ in state preparation and read-out measurement. As we restricted
ourselves to the practically relevant setting of single qubit errors so far, the n qubit setting then
just becomes

Hmin(X|RE2)ω⊗n = n ·Hmin(X|RE2)ω (37)

with the linear min-entropy rate α = Hmin(X|RE2)ω — as the conditional min-entropy is additive
on tensor product states [13].

For the benchmarking of correlated multiple qubit errors, we have to compute the block spd
for the respective Hmin(X|RE2)ωn directly. Modern benchmarking schemes promise to find good
bounds on Hmin(X|RE2)ωn that potentially scale efficiently up to moderate sizes of n for realistic
settings with weak multiple qubit correlations. We leave that for further investigation and refer
for a starting point to [12] and references therein.

V. COMPARISON WITH PREVIOUS WORK

Our approach to randomness generation is in the so-called device-dependent approach, where
we do characterize the quantum processing units to some degree. There is a large body of work
developing methods for settings that are (semi) device-independent — where the inner workings of
the quantum technologies employed can be self-tested. There is typically a trade-off in practicability
and efficiency versus the level of device independence and we refer to the review article [9] for further
discussions.

Often specialised quantum hardware is used for quantum randomness generation. When it
comes to employing quantum processing units for randomness generation, it is interesting to com-
pare our methods with the recent results of Cambridge Quantum Computing (CQC) [6]. Their
work is also implemented in Amazon Braket [10], but is different in the sense that it operates in
the semi device-independent setting. The quantum part of the protocol is then more involved, but
appealing as the semi device-independent setting requires fewer assumptions on the characteriza-
tion of the underlying hardware. On the other hand, their results come with the caveat of larger
input sizes n needed for their scheme to produce non-zero output. When it comes to the classical
post-processing, compared to [6] we use a slightly improved quantum-proof randomness extractor
that is more flexible and allows for smaller input sizes n. However, CCQ’s implementation is more
efficient and secure, relying on the Number Theoretic Transform (NTT) instead of the DFT in our
case. Amongst other things, this allows to go to larger input sizes n > 107 which is important to
make their approach efficient.

Further improvements in classical post-processing seem possible, such as allowing lower qual-
ity entropy sources (e.g., based on [17]) or additional steps based on short seeded quantum-proof
randomness extractors [5, 20]. All of this however, comes with the bottleneck of required im-
plementations in basically linear runtime. This seems to require further results on the theory of
algorithms behind randomness extractors [15].
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Appendix A: Benchmarking measurement devices

Our goal is to characterize noisy measurement devices when only noisy state preparation is
available, e.g., affected by depolarizing noise of some strength λ as in Section IV. Note that this is
reversed from the usual quantum state tomography problem, when the measurement devices are
assumed to be (at least somewhat) reliable.

If the preparation of qubit states ρ and the sub-sequent measurement M = {|0〉〈0|A, |1〉〈1|A}
are both perfect, then measuring different states ρ1, ρ2, . . . , ρK leads to the measurement result
zero with probability

pi = tr
[
ρi|0〉〈0|

]
for each i = 1, . . . ,K. (A1)

Measuring each state ρi a total of N times, in the large N limit the fraction of zeroes becomes
equal to pi and we can write 

~ρT1
~ρT2
...
~ρTK


︸ ︷︷ ︸

=A

·


1
0
0
0


︸ ︷︷ ︸
=
−→
M

=


p1

p2
...
pK


︸ ︷︷ ︸

= ~p

(A2)

with ~ρi denoting the vectorization of the density matrices representing the quantum states ρi, and−→
M the vectorization of the matrix representation of the measurement operator |0〉〈0|.

Now, when we are restricted to noisy state preparation and finite statistics, we observe the
following differences:

• We can only prepare different qubit states ρ1(ε), ρ2(ε), . . . , ρK(ε) each affected by some state
preparation noise with parameter ε ∈ [0, 1]. For example, in Section IV the parameter ε
corresponds to the depolarizing noise of some strength λ.

• The entries in the vector ~p(δ) can only be populated with the finite statistical values

pi(δ) =
#(of zeroes)

N
(A3)

sampling from the underlying probability distribution (corresponding to the maximum like-
lihood estimate for pi).

• The vectorized measurement operator
−→
M(ε, δ) is not specified, but we only know that it has

the general structure of a qubit POVM element, i.e., coming from a complex two times two
matrix 0 ≤ M(ε, δ) ≤ 1. For example, in Section IV we worked with the specific Ansatz
−→
MT = (1, 0, 0, 1− µ) for the bias parameter µ.

Hence, we have a linear system of equations for the unknown qubit POVM element
−→
M(ε, δ) as

~ρT1 (ε)
~ρT2 (ε)

...
~ρTK(ε)


︸ ︷︷ ︸

=A(ε)

·
−→
M(ε, δ) =


p1(δ)
p2(δ)

...
pK(δ)


︸ ︷︷ ︸

= ~p(δ)

(A4)
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Going forward we choose K = 4 as A and A(ε) then conveniently become square matrices (the
general case can be handled similarly). Denoting the differences

∆A = A−A(ε), ∆~p = ~p− ~p(δ), ∆
−→
M =

−→
M −

−→
M(ε, δ) , (A5)

standard estimates on the stability of the solution of systems of linear equations give the error
propagation bound

‖∆
−→
M‖
‖
−→
M‖

≤ κ(A)

1− κ(A) · ‖∆A‖‖A‖

(
‖∆~p‖
‖~p‖

+
‖∆A‖
‖A‖

)
, (A6)

where κ(A) = ‖A‖ · ‖A−1‖ denotes the condition number of the matrix A. By inspection this
bound is non-trivial as long as ‖∆A‖ ≤ 1

‖A−1‖ , which corresponds to small deviations ∆A while

having non-singular A.4

The term ‖∆A‖ on the rhs of (A6) is upper bounded by the error model for noisy state prepa-
ration. For the finite statistics maximum likelihood estimate ~p(δ), we can pool the N = N1N2

measurement results into N1 groups of N2 measurement results each, leading to (1 − α) · 100%
confidence intervals for the entries as5

pi(δ)±
z1−α/2 · sN1−1√

N1
, (A7)

where z1−α/2 denotes the (1− α/2)-quantile of the standard normal distribution and we have the
bias-corrected standard deviation

s2
N1−1 =

∑N1
j=1

(
#(of zeroes)j

N2
−

∑N1
i=1 #(of zeroes)i

N1N2

)2

N1 − 1
. (A8)

The confidence intervals from (A7) for the entries pi(δ) of ~p(δ) then give upper bounds on ‖∆~p‖
and trough (A6) upper bounds on ‖∆

−→
M‖. In turn, such upper bounds on ‖∆

−→
M‖ allow to give

lower bounds on the relevant min-entropy as discussed Section IV.
Finally, for K 6= 4 setting with non-square A similar bounds can be derived, but then featuring

the pseudo-inverse A+ instead of the inverse A−1.
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