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Abstract—It is well known that for the discrimination of
classical and quantum channels in the finite, non-asymptotic
regime, adaptive strategies can give an advantage over non-
adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory
55(8), 3807 (2009)] showed that in the asymptotic regime, the
exponential error rate for the discrimination of classical channels
is not improved in the adaptive setting. We show that, for the
discrimination of classical-quantum channels, adaptive strategies
do not lead to an asymptotic advantage. As our main result, this
establishes Stein’s lemma for classical-quantum channels. Our
proofs are based on the concept of amortized distinguishability
of channels, which we analyse using entropy inequalities.

I. INTRODUCTION

A fundamental task in quantum statistics is to distinguish
between two (or multiple) non-orthogonal quantum states. Af-
ter considerable efforts, the resource trade-off is by now well
understood in the information-theoretic limit of asymptotically
many copies and quantified by quantum Stein’s lemma [1], [2],
the quantum Chernoff bound [3], [4], as well as refinements
thereof [5], [6], [7]. As a natural extension of quantum state
discrimination, we study the task of distinguishing between
two quantum channels in the information-theoretic limit of
asymptotically many repetitions. Whereas the mathematical
properties of states and channels are strongly intertwined,
channel discrimination is qualitatively different from state
discrimination for a variety of reasons. Most importantly, when
distinguishing between two quantum channels, one can employ
adaptive protocols that make use of a quantum memory [8],
as depicted in Figure 1. For the finite, non-asymptotic regime,
such protocols are then also known to give an advantage over
non-adaptive protocols [9, Sect. 5], the latter of which are
restricted to picking a fixed input state and then executing
standard state discrimination for the channel outputs [10]. In
fact, the advantage of adaptive protocols in this regime already
manifests itself for the discrimination of classical channels [9].

Somewhat surprisingly, Hayashi showed that this advan-
tage disappears for classical channel discrimination in the
information-theoretic limit of a large number of repeti-
tions [11]. In particular, the optimal exponential error rate
for the discrimination of classical channels in the sense of
Stein and Chernoff is achieved by just picking a large number
of copies of the best possible product-state input and then
performing state discrimination for the product output states.

In the following, we extend some of the seminal classical
results to the quantum setting by providing a framework for

deriving upper bounds on the power of adaptive protocols
for asymptotic quantum channel discrimination. In particular,
in order to quantify the largest distinguishability that can be
realized between two quantum channels, we introduce the
concept of amortized channel divergence. This then allows
to give converse bounds for adaptive channel discrimination
protocols in the asymmetric hypothesis testing setting in the
sense of Stein and Chernoff. Now, whenever the amortized
channel divergences collapse to standard channel divergences,
we immediately get single-letter converse bounds on the
power of adaptive protocols for channel discrimination. Most
importantly, we arrive at the characterization of the strong
Stein’s lemma for classical-quantum channels. Namely, as a
full extension of the corresponding classical result [11, Cor. 1],
we find that picking many copies of the best possible product-
state input and then applying quantum Stein’s lemma for the
product output states is asymptotically optimal.

Intriguingly, we leave open the question of whether adaptive
protocols improve the exponential error rate for quantum
channel discrimination in the asymmetric Stein setting. We
emphasise that this might already occur for entanglement
breaking channels or even quantum-classical channels (mea-
surements). This would also be consistent with the known
advantage of adaptive protocols in the symmetric Chernoff
setting [10], [9].

II. NOTATION

Quantum systems are denoted by A,B,R and have finite
dimensions |A|, |B|, |R|, respectively. Quantum states on a
system A are linear, positive semi-definite operators of trace
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Figure 1. A protocol for channel discrimination when the channel N or M
is called three times.



one and denoted by ρA, σA, τA ∈ S(A). Quantum channels are
completely positive and trace-preserving maps from the linear
operators on A to the linear operators on B and denoted by
NA→B or MA→B . The relative entropy for quantum states
ρ, σ is defined as [12]

D(ρ‖σ) :=
{
tr
[
ρ (log ρ− log σ)

]
supp(ρ) ⊆ supp(σ)

∞ otherwise
(1)

where in the above and throughout the paper all logarithms
are evaluated using base two. For quantum states ρ, σ and
α ∈ (0, 1) ∪ (1,∞), the Petz-Rényi divergences [13] and the
sandwiched Rényi divergences [14], [15] are defined as

Dα(ρ‖σ) :=
1

α− 1
log tr

[
ρασ1−α] (2)

D̃α(ρ‖σ) :=
1

α− 1
log tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
(3)

whenever either α ∈ (0, 1) and ρ is not orthogonal to σ
in Hilbert-Schmidt inner product or α > 1 and supp(ρ) ⊆
supp(σ).1 Otherwise we set Dα(ρ‖σ) :=∞ =: D̃α(ρ‖σ).

III. ASYMPTOTIC CHANNEL DISCRIMINATION

The problem of quantum channel discrimination is made
mathematically precise by the following hypothesis testing
problem. Given two quantum channels NA→B and MA→B
acting on an input system A and an output system B, a general
adaptive strategy for discriminating them is as follows. We al-
low the preparation of an arbitrary input state ρA1R1 = τA1R1 ,
where R1 is an ancillary register. The ith use of a channel
accepts the register Ai as input and produces the register Bi
as output. After each invocation of the channel NA→B or
MA→B , an (adaptive) channel A(i)

BiRi→Ai+1Ri+1
is applied to

the registers Bi and Ri, yielding a quantum state ρAi+1Ri+1
or

τAi+1Ri+1 in registers Ai+1Ri+1, depending on whether the
channel is equal to NA→B or MA→B . That is,

ρAi+1Ri+1
:= A(i)

BiRi→Ai+1Ri+1
(ρBiRi), (4)

ρBiRi := NAi→Bi(ρAiRi), (5)

τAi+1Ri+1
:= A(i)

BiRi→Ai+1Ri+1
(τBiRi), (6)

τBiRi :=MAi→Bi(τAiRi), (7)

for every 1 ≤ i < n on the left-hand side, and for every
1 ≤ i ≤ n on the right-hand side. Finally, a quantum
measurement {QBnRn , 1BnRn −QBnRn} is performed on the
systems BnRn to decide which channel was applied. The
outcome Q corresponds to a final decision that the channel is
N , while the outcome 1−Q corresponds to a final decision that
the channel is M. We define the final decision probabilities

p := Tr
[
QBnRnρBnRn

]
, q := Tr

[
QBnRnτBnRn

]
. (8)

1Throughout the paper, we employ the convention that inverses are to be
understood as generalized inverses.

Figure 1 depicts such a protocol for channel discrimination
when the channel N or M is called three times.2 We use the
simplifying notation {Q,A} to identify a particular strategy
using channels {A(i)

BiRi→Ai+1Ri+1
}i and a final measurement

{QBnRn , 1BnRn−QBnRn}. For simplicity, this shorthand also
includes the preparation of the initial state ρA1R1 = τA1R1 ,
which can be understood as arising from the action of an initial
channel A(0)

B0R0→A1R1
for which the input systems B0 and R0

are trivial. This naturally gives rise to respective the type I and
type II error probabilities:

αn({Q,A}) := tr
[
(1BnRn −QBnRn)ρBnRn

]
, (9)

βn({Q,A}) := tr
[
QBnRnτBnRn

]
. (10)

For asymmetric hypothesis testing in the sense of Stein, we
minimize the type II error probability, under the constraint
that the type I error probability does not exceed a constant
ε ∈ (0, 1). We are then interested in characterizing

Dε,n
h (N‖M)

:= sup
{Q,A}

{
− 1

n
log βn({Q,A})

∣∣∣∣αn({Q,A}) ≤ ε} (11)

in the asymptotic limit n→∞. The strong converse exponent
is a refinement of the asymmetric hypothesis testing quantity
discussed above. For r > 0, we are interested in characterizing

Hn
r (N‖M)

:= inf
{Q,A}

{
− 1

n
log(1− αn({Q,A}))

∣∣∣∣βn({Q,A}) ≤ 2−rn
}

(12)

in the asymptotic limit n → ∞. The interpretation is that
the type II error probability is constrained to tend to zero
exponentially fast at a rate r > 0, but then if r is too
large, the type I error probability will necessarily tend to one
exponentially fast, and we are interested in the exact rate
of exponential convergence. Note that this strong converse
exponent is only non-trivial if r is sufficiently large.

Similarly one can also study the symmetric Chernoff setting,
where one is interested in minimizing the total error probabil-
ity of guessing incorrectly — as done in [16].

IV. AMORTIZED DISTINGUISHABILITY OF CHANNELS

We say that a function D : S(A)×S(A)→ R∪{+∞} is a
divergence if for quantum states ρA, σA and quantum channels
NA→B , we have the monotonicity

D(ρA‖σA) ≥ D(NA→B(ρA)‖NA→B(σA)). (13)

From this, one then defines a channel divergence as a measure
for the distinguishability of two quantum channels [17].

2Another kind of channel discrimination strategy often considered in the
literature is a parallel discrimination strategy, in which a state ρAnR is
prepared, either the tensor-power channel N⊗n

A→B or M⊗n
A→B is applied,

and then a joint measurement is performed on the systems BnR. As noted
in [8], a parallel channel discrimination strategy of the channels N and M
is a special case of an adaptive channel discrimination strategy.



Definition IV.1. Let D be a divergence and NA→B ,MA→B
quantum channels. The channel divergence of NA→B and
MA→B is defined as

D(N‖M) := sup
ρ∈S(AR)

D(NA→B(ρAR)‖MA→B(ρAR)).

(14)

We now define the amortized channel divergence as another
measure of the distinguishability of two quantum channels.
The idea behind this measure is to consider two different
states ρAR and σAR that can be input to the channels NA→B
and MA→B , in order to explore the largest distinguishability
that can be realized between the channels. However, from a
resource-theoretic perspective, these initial states themselves
could have some distinguishability, and so it is sensible to
subtract off the initial distinguishability of the states ρAR and
σAR from the final distinguishability of the channel output
states NA→B(ρAR) and MA→B(σAR).

Definition IV.2. Let D be a divergence and NA→B ,MA→B
quantum channels. We define the amortized channel diver-
gence as3

DA(N‖M) := sup
ρ,σ∈S(AR)

D(NA→B(ρAR)‖MA→B(σAR))

−D(ρAR‖σAR). (15)

Based on the concept of amortized channel divergences, we
now develop a meta-converse for quantum channel discrimina-
tion. Consider a channel discrimination protocol as introduced
in Section III, with final decision probabilities p and q, as
given in (8). Conceptually, the statement of the lemma is that
the distinguishability of the final decision probabilities p and
q at the end of a channel discrimination protocol, in which
the channels are called n times, is limited by n times the
amortized channel divergence of the two channels.

Lemma IV.3. Let NA→B ,MA→B be quantum channels.
Then, we have for any quantum channel discrimination pro-
tocol and faithful divergence that

D(p‖q) ≤ n ·DA(N‖M) (16)

where D(p‖q) := D(ζ(p)‖ζ(q)) with ζ(p) := p|0〉〈0| +
(1− p) |1〉〈1|.
Proof. Let {Q,A} denote a protocol for discrimination of the
channels N and M, and let p and q denote the final decision
probabilities. Consider that

D(p‖q)
≤ D(ρBnRn‖τBnRn) (17)
≤ D(ρBnRn‖τBnRn)−D(ρA1R1

‖τA1R1
) (18)

= D(ρBnRn‖τBnRn)−D(ρA1R1
‖τA1R1

)

+

n∑
i=2

(
D(ρAiRi‖τAiRi)−D(ρAiRi‖τAiRi)

)
(19)

3In contrast to Definition IV.1 the supremum cannot be restricted to pure
states only (in general). Moreover, there is a priori no dimension bound on
the system R.

= D(ρBnRn‖τBnRn)−D(ρA1R1
‖τA1R1

)

+

n∑
i=2

(
D
(
A(i−1)
Bi−1Ri−1→AiRi(ρBi−1Ri−1

)∥∥A(i−1)
Bi−1Ri−1→AiRi(τBi−1Ri−1

)
)

−D(ρAiRi‖τAiRi)
)

(20)

The first inequality follows from monotonicity under the final
measurement {QBnRn , 1BnRn − QBnRn}, and the second
inequality follows from the assumption of faithfulness together
with the fact that the initial states are equal, i.e., ρA1R1 =
τA1R1

. Continuing, we have that

Eq. (20)
≤ D(ρBnRn‖τBnRn)−D(ρA1R1‖τA1R1)

+

n−1∑
i=1

D(ρBiRi‖τBiRi)−
n∑
i=2

D(ρAiRi‖τAiRi) (21)

=

n∑
i=1

(
D(ρBiRi‖τBiRi)−D(ρAiRi‖τAiRi)

)
(22)

=

n∑
i=1

(
D(NA→B(ρAiRi)‖MA→B(τAiRi))

−D(ρAiRi‖τAiRi)
)

(23)

≤ n ·DA(N‖M) (24)

where the first inequality follows from monotonicity with
respect to the channel A(i−1)

Bi−1Ri−1→AiRi .

V. CLASSICAL-QUANTUM CHANNEL DISCRIMINATION

For non-adaptive protocols, when we restrict the input
states to be product states — but still allow for a quantum
memory system R— it directly follows from Stein’s lemma
for quantum state discrimination [1], [2] that the optimal
asymptotic error exponent for ε ∈ (0, 1) is given by the
quantum relative entropy divergence D(N‖M), as observed
in [18]. This obviously also gives an achievability bound for
the adaptive setting. In the following, we are interested in
converse bounds for the adaptive setting.

Proposition V.1. Let NA→B ,MA→B be quantum channels.
Then, we have for n ∈ N and ε ∈ [0, 1) that

Dε,n
h (N‖M) ≤ 1

1− ε

(
DA(N‖M) +

h2(ε)

n

)
(25)

where h2(ε) denotes the binary entropy.

Note that this bound is a priori an unbounded optimization
problem and that it is in general unclear if the amortized
quantity DA(N‖M) can be achieved by an adaptive protocol.

Proof of Proposition V.1. Standard arguments as in the proof
of quantum Stein’s lemma [1] give

D(p‖q) = (1− p) log 1− p
1− q + p log(p/q) (26)



= αn({Q,A}) log
αn({Q,A})

1− βn({Q,A})

+ (1− αn({Q,A})) log
1− αn({Q,A})
βn({Q,A})

(27)

= ε log
ε

1− βn({Q,A})
+ (1− ε) log 1− ε

βn({Q,A})
(28)

= −h2(ε)− ε log(1− βn({Q,A}))
− (1− ε) log βn({Q,A}) (29)

≥ −h2(ε)− (1− ε) log βn({Q,A}). (30)

The claim follows by rearranging the above together with
Lemma IV.3 for the relative entropy channel divergence.

In the following we consider classical-quantum channels

NX→B(·) =
∑
x

〈x| · |x〉νxB ,MX→B(·) =
∑
x

〈x| · |x〉µxB
(31)

where {|x〉}x is an orthonormal basis and {νxB}x and {µxB}x
are sets of quantum states. We find that the optimal asymp-
totic classical-quantum channel discrimination protocol for the
Stein setting is to pick the best possible input and then to apply
a tensor-power strategy.

Theorem V.2. Let NX→B ,MX→B be classical-quantum
channels. Then, we have that

lim
ε→0

lim
n→∞

Dε,n
h (N‖M) = max

x
D(νxB‖µxB). (32)

This result implies that adaptive strategies, quantum memo-
ries, and entangled inputs do not improve the Stein exponent.
Note that this slightly extends the classical case as well, in the
sense that it was previously not resolved if quantum memories
could be helpful in the asymptotic case.

The achievability part of Theorem V.2 follows directly by
employing a product-state discrimination strategy [1], [2].
Therefore, it remains to show the converse direction. We
know that the amortized quantum relative entropy divergence
DA(N‖M) provides a weak converse rate (Proposition V.1),
with the only missing step being to evaluate that quantity. The
following lemma then immediately implies Theorem V.2.

Lemma V.3. Let NX→B ,MX→B be classical-quantum chan-
nels. Then, we have the amortization collapse

DA(N‖M) = max
x

D(νx‖µx), (33)

DAα (N‖M) = max
x

Dα(ν
x‖µx) for α ∈ [0, 2], (34)

D̃Aα (N‖M) = max
x

D̃α(ν
x‖µx) for α ≥ 1

2
. (35)

Proof. We give a proof for the relative entropy and refer to [16,
Lem. 26] for the Rényi divergences. By picking ρAR = σAR =
|x〉〈x|A ⊗ |x〉〈x|R, we get DA(N‖M) ≥ D(νxB‖µxB). Since
this holds for all x, we conclude that

DA(N‖M) ≥ max
x

D(νxB‖τxB). (36)

For the other direction, consider for states ρAR and σAR that

NA→B(ρAR) =
∑
x

pxν
x
B ⊗ ρxR, (37)

MA→B(σAR) =
∑
x

qxµ
x
B ⊗ σxR, (38)

where pxρ
x
R := 〈x|AρAR|x〉A and qxσ

x
R := 〈x|AσAR|x〉A,

with px and qx probability distributions and {ρxR}x and {σxR}x
sets of quantum states. Then, we have from the monotonicity
of the relative entropy under channels that

D(NA→B(ρAR)‖MA→B(σAR))−D(ρAR‖σAR)

≤ D
(∑

x

pxν
x
B ⊗ ρxR

∥∥∥∥∥∑
x

qxµ
x
B ⊗ σxR

)

−D
(∑

x

px|x〉〈x|X ⊗ νxB ⊗ ρxR

∥∥∥∥∥∑
x

qx|x〉〈x|X ⊗ νxB ⊗ σxR

)
(39)

≤ D
(∑

x

px|x〉〈x|X ⊗ νxB ⊗ ρxR

∥∥∥∥∥∑
x

qx|x〉〈x|X ⊗ µxB ⊗ σxR

)

−D
(∑

x

px|x〉〈x|X ⊗ νxB ⊗ ρxR

∥∥∥∥∥∑
x

qx|x〉〈x|X ⊗ νxB ⊗ σxR

)
(40)

=
∑
x

px

(
Tr
[
(νxB ⊗ ρxR) log (qxνxB ⊗ σxR)

]
− Tr

[
(νxB ⊗ ρxR) log (qxµxB ⊗ σxR)

])
(41)

=
∑
x

px Tr
[
(νxB ⊗ ρxR) ((log νxB − logµxB)⊗ 1R)

]
(42)

=
∑
x

pxD(νxB‖µxB) (43)

≤ max
x

D(νxB‖µxB). (44)

This concludes the proof.

The strong converse exponent for the discrimination of
classical-quantum channels is derived along similar lines.

Theorem V.4. Let NX→B ,MX→B be classical-quantum
channels. Then, for r > 0 we have that

lim
n→∞

Hn
r (N‖M) = sup

α>1

α− 1

α

(
r −max

x
D̃α(ν

x‖µx)
)
.

(45)

The optimality part follows from the amortization collapse
of the sandwiched Rényi divergences in Lemma V.3 together
with a standard strong converse exponent argument [16,
Prop. 20]. The achievability part requires a minimax argu-
ment [16, Thm. 27]. As a corollary, we then get the strong
variant of Stein’s lemma for classical-quantum channels.

Corollary V.5. Let NX→B ,MX→B be classical-quantum
channels. Then, for ε ∈ (0, 1) we have that

lim
n→∞

Dε,n
h (N ,M) = max

x
D(νx‖µx). (46)



Proof. In Theorem V.4, if r > maxxD(νxB‖µxB), then by the
fact that maxx D̃α(ν

x
B‖µxB) is monotone increasing with α

and the continuity

lim
α→1

max
x

D̃α(ν
x
B‖µxB) = max

x
D(νxB‖µxB), (47)

there exists α > 1 such that r > maxx D̃α(ν
x
B‖µxB), and

so limn→∞Hn
r (N‖M) > 0, implying that the Type I error

probability tends to one exponentially fast.

In contrast to the weak and strong Stein’s lemma (Theo-
rem V.2 and Corollary V.5), we cannot conclude that the strong
converse exponent in Theorem V.4 is achieved by picking the
best possible input element x, but we instead have to consider
distributions over the input alphabet (see [11, Sect. IV] for an
extended discussion). This is similar to the classical case and
Hayashi in fact gives an explicit example where considering
only one input element x is not sufficient [11, Section IV].
He then shows that, in the classical case, it suffices to opti-
mize with respect to probability distributions that are strictly
positive on just two elements [11, Theorem 3].

Finally, the amortization collapses from Lemma V.3 can also
be employed to make statements about the symmetric Chernoff
setting [16, Sect. VI.C-D]. However, the tight information-
theoretic characterization remains open even for classical-
quantum channels.4

VI. OUTLOOK

In order to derive upper bounds on the power of adaptive
quantum channel discrimination protocols, we introduced a
framework based on the concept of amortized channel di-
vergence. As our main result we then established the strong
Stein’s lemma for classical-quantum channels. We regard our
work as an initial step towards a plethora of open questions
surrounding quantum channel discrimination and refer to the
discussion in [16, Sect. V.II] for more examples with tight
single-letter characterizations.

We have to leave open the general question of whether adap-
tive protocols improve the exponential error rate for quantum
channel discrimination in the asymmetric Stein setting — as
they do in the symmetric Chernoff setting [10], [9]. A first
step in this direction would be to look at an intermediate
strategy in which a state ρAnR is prepared, either the tensor-
power channel N⊗nA→B or M⊗nA→B is applied, and then a
joint measurement is performed on the systems BnR. We
emphasise that it is not even known whether this setting
offers an asymptotic advantage compared to a tensor-power
strategy with input ρ⊗nAR. The question might be thought of as
determining if

1

n
D
(
N⊗n

∥∥M⊗n) ?→ D (N‖M) (48)

holds for all quantum channels — whereas our work implies
the limit for classical-quantum channels. Now, note that if we
restrict the quantum memory system R to be one-dimensional,

4Already for entanglement-breaking channels, the straightforward Chernoff
bound conjecture is known not to hold [9].

then the Hastings counterexamples to the minimal output
entropy conjecture [19], applied to the setting involving a
replacer channel, immediately give a separation to the tensor-
product strategy. This suggests that for a non-trivial quantum
memory R, there are some deep entropic additivity questions
that remain to be explored.
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