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(a) Boundary of the achievable region for di↵erent values of n
(second order approximation).
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(b) Boundary of the achievable region for ! = 5%

(third order approximation).
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(c) Comparison of strict bounds with third order

approximation for ! = 5%.
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Qubit Erasure Channel II

• Coding with two-way classical communication assistance for                                :! = 0.25, " = 0.01
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(a) Boundary of the achievable region.
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needed to get within 90% of quantum capacity
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—> extend efficiently computable bounds from, e.g.:
[Matthews and Wehner, IEEE Trans. on Info. Th. (2014)], 
[Leung and Matthews, IEEE Trans. on Info. Th. (2015)]

• Quantum capacity together with quantum channel dispersion  provide a 
good characterisation for simple channels

Thanks!

• Finite resources quantum coding: around 1000 (coherent) qubits  are 
needed to get within 90% of quantum capacity

• Study explicit and efficient quantum codes (vs. information-theoretic 
limit studied here)

• Our bounds apply to all finite-dimensional quantum channels (but are not 
necessarily tight)



Extra: Qubit Depolarizing Channel I
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öRD ↵ (n; ✏)  öRZ ↵ (n; ✏)

(slightly better upper bounds known)

• We show Þnite resources converse bound:

(where      is the qubit dephasing channel)Z!

—> but Q(D! ) =?

D! : ! !" (1 # " )! +
"
3

(X! X + Y ! Y + Z! Z) ! 2 [0, 1]•                                                                           with                 and

1 ! h(! ) ! ! log 3 = I c(D! ) < Q (D! ) " min{ 1 ! h(! ), 1 ! 4! }

• Only lower and upper bounds  on the quantum capacity, super-additivity of 
coherent information:

= Q(Z ! )

• How many qubits do we need to coherently  manipulate  to witness super-additivity?



Extra: Qubit Depolarizing Channel II
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Q(D! ) =?

• Known bound: öRD ↵ (n; ✏)  öRZ ↵ (n; ✏)• We show:Ic(D! )  Q(D! )  Q(Z! )


