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Abstract—Estimation of quantum relative entropy is a funda-
mental statistical task in quantum information theory, physics,
and beyond. While several estimators of the same have been
proposed in the literature along with their computational com-
plexities explored, a limit distribution theory which character-
izes the asymptotic fluctuations of the estimation error is still
premature. As our main contribution, we characterize these
asymptotic distributions in terms of Fréchet derivatives of ele-
mentary operator-valued functions. We achieve this by leveraging
an operator version of Taylor’s theorem and identifying the
regularity conditions needed. As an application of our results,
we consider an estimator of quantum relative entropy based on
Pauli tomography of quantum states and show that the resulting
asymptotic distribution is a centered normal, with its variance
characterized in terms of the Pauli operators and states. We
utilize the knowledge of the aforementioned limit distribution to
obtain asymptotic performance guarantees for a multi-hypothesis
testing problem.

I. INTRODUCTION

Estimation of a quantum state, also known as quantum state
tomography, is an important problem in quantum information
theory, physics, and quantum machine learning, see e.g., [1]–
[8]. In several applications, however, the quantity of interest
may not be the entire state, but only a functional of it.
Quantum divergences such as quantum relative entropy [9]
and its Rényi generalizations [10]–[14] form an important
class of such functionals. They play a central role in quantum
information theory both in terms of characterizing fundamental
limits as well as applications, e.g., see the books [15]–
[17]. For instance, the quantum relative entropy characterizes
the error-exponent in asymmetric binary quantum hypothesis
testing [18] and the Petz-Rényi divergence quantifies the
exponent in quantum Chernoff bounds [19], [20]. Owing to
their significance, several estimators of these measures have
been proposed recently in the literature and their performance
investigated in terms of benchmarks such as copy and query
complexity (see Related work section below). However, a
limit distribution theory which characterizes the asymptotic
distribution of estimation error is largely unexplored.

Here, we seek a limit distribution theory for quantum
relative entropy [9] between quantum states ρ and σ, defined
as

D (ρ∥σ) :=

{
Tr
[
ρ
(
log ρ− log σ

)]
, if ρ ≪ σ,

∞, otherwise.
(1)

Given estimators ρn and σn of ρ and σ, respectively, we
want to identify the scaling rate rn (or convergence rate

r−1
n ) and the limiting variable Z such that the following

convergence in distribution (weak convergence) holds:

rn
(
D (ρn∥σn)− D (ρ∥σ)

) w−→ Z.

Of interest is also the scenario where only one state, say ρ
or σ, is estimated and the other is known. Characterization of
such limit distributions have several potential applications in
quantum statistics and machine learning such as constructing
confidence intervals for quantum hypothesis testing, asymp-
totic analysis of quantum algorithms, and quantum statistics
(see [21]–[23] for some classical applications).

While limit distributions fully quantify the asymptotic per-
formance, deriving such results for estimators of quantum
relative entropy is challenging on account of two reasons.
Firstly, limit distributions need not always exist, as is well-
known for relative entropy in the classical setting. Secondly,
the non-commutative framework of quantum theory makes the
analysis more involved. For tackling the first challenge, we use
an operator version of Taylor’s expansion with remainder and
ascertain primitive conditions for the existence of limits. The
technical core of our contribution entails determining condi-
tions that allow interchange of limiting operations on trace
functionals of Fréchet derivatives that appear in such an ex-
pansion. For handling issues arising due to non-commutativity,
we use appropriate integral expressions for operator functions.

Applying the aforementioned method to quantum relative
entropy, we establish the following convergence in distribution
(Theorem 1) when rn(ρn−ρ)

w−→ L1 and rn(σn−σ)
w−→ L2

for ρ ̸= σ under appropriate regularity conditions:

rn
(
D (ρn∥σn)− D (ρ∥σ)

)
w−→ Tr [L1(log ρ− log σ)− ρD[log σ](L2)].

Here1, D[f(A)](B) denotes the first-order Fréchet derivative
(see Definition 1 below) of an operator-valued function f
at operator A in the direction of operator B, and L1 (resp.
L2) denotes the weak limit of the estimator ρn (resp. σn),
appropriately centered and scaled. Analogous to the classical
case, a faster convergence rate is achieved when ρ = σ with
the limit characterized in terms of second-order derivatives.

As an application of our limit distribution results, we char-
acterize the asymptotic distribution of an estimator of quantum
relative entropy based on Pauli tomography of quantum states
ρ, σ. Specifically, we show that

√
n
(
D (ρ̂n∥σ̂n)− D (ρ∥σ)

) w−→ W,

1Throughout, we consider logarithms to the base e.



where W is a centered Gaussian variable with a variance that
depends on the states and Pauli operators. We then use this
result to obtain performance guarantees for a multi-hypothesis
testing problem for determining the quantum relative entropy
between an unknown state ρ and a known state σ. Assum-
ing that identical copies of the unknown state are available
for measurement, we first perform tomography to obtain an
estimate of ρ and then use the knowledge of the Gaussian
limit to design a test statistic (decision rule) that achieves
any desired error level for appropriately chosen thresholds.
The test statistic achieves the same performance even when
the number of hypotheses scales at a sufficiently slow rate
with the number of measurements. Such tests have potential
applications to auditing of quantum differential privacy [24],
as considered in [22], [25] for the classical case.

A. Related Work

Statistical analysis of estimators of classical information
measures and divergences has been an active area of research
over the past few decades. The relevant literature pertains
broadly to showing consistency, quantifying convergence rates
of estimators (or equivalently sample complexity), and char-
acterizing their limiting distributions. Consistency and/or con-
vergence rates for various estimators of f -divergences, which
subsumes entropy and mutual information as special cases,
have been studied, see e.g., [26]–[33]. Limit distributions for
several f -divergence estimators such as those based on kernel
density estimates, k-nearest neighbour methods, and plug-in
methods have been established recently, e.g., [22], [25], [29],
[32], [34], while corresponding results for Rényi divergences
have been studied in [23]. Limit distribution theory has also
been explored extensively in the optimal transport literature
for the class of Wasserstein distances.

In the quantum setting, computational complexities of vari-
ous estimators of quantum information measures have been
investigated under different input models, see e.g., [35]–
[42]. Specifically, [36] established copy complexity bounds
characterizing the optimal dimension dependence for quantum
Rényi entropy estimation when independent copies of the state
are available for measurement. [37], [38] considered entropy
estimation under a quantum query model, which assumes
access to an oracle that prepares the input quantum state.
For limit distributional results in the quantum setting, the
asymptotic distribution for spectrum estimation of a quantum
state based on the empirical Young’s diagram (EYD) algorithm
[43], [44] has been established in [45], [46]. Local asymptotic
normality results for quantum experiments based on a family
of density operators indexed by a parameter have also been
studied, see e.g., [47], [48]. However, to the best of our
knowledge, a limit distribution theory for quantum relative
entropy has not been explored before.

II. PRELIMINARIES

A. Notation

Throughout, H is a separable complex Hilbert space, which
can be identified with ℓ2(N), the space of absolute square-

summable infinite sequences with complex elements. L(H)
denotes the set of linear operators (henceforth, referred to
simply as operators) from H to H. Tr [·] and ∥·∥1 signifies
the trace functional and the trace-norm (Schatten 1-norm),
respectively. H and P stands for the set of Hermitian and
positive semi-definite operators acting on H, respectively,
while H1 denotes the subset of H with finite trace-norm. S
designates the set of density operators (or quantum states),
i.e., the set of elements of P with unit trace, and S+ denotes
its subset with strictly positive eigenvalues. The notation ≤
represents the Löwner partial order in the context of operators,
i.e., for A,B ∈ H, A ≤ B means that B−A ∈ P . 1X denotes
indicator of a set X and I denotes the identity operator on
H. For operators A,B, A ≪ B signifies that the support of
A is contained in that of B. A−1 stands for the generalized
(Moore–Penrose) inverse of an operator A. When H is finite
dimensional, we use a subscript d to indicate the dimension
wherever relevant, e.g., Hd for the set of Hermitian operators.

Let (Ω,A,P) be a sufficiently rich probability space on
which all random elements are defined. A sequence of ran-
dom elements (Xn)n∈N taking values in a topological space
S converges weakly to a random element X (in S) if
E[f(Xn)] → E[f(X)] for all bounded continuous functions
f : S → R. This is denoted by Xn

w−→ X . A random density
operator is a Borel-measurable mapping from Ω to S.

B. Fréchet differentiability

The notion of Fréchet differentiability of an operator-valued
function on the space of Hermitian operators with bounded
trace-norm will play an essential role in our results below. Let
spec(A) denote the spectrum of an operator A.

Definition 1 (Fréchet differentiability, see e.g. [49]) For an
open set X ⊆ R, let f : X → R̄ and A ∈ H1 with spec(A) ⊆
X . Then, f is called (Fréchet) differentiable at A if there exists
a linear map D[f(A)] : H → H such that for all H ∈ H1

such that spec(A+H) ⊆ X ,

∥f(A+H)− f(A)−D[f(A)](H)∥ = o(∥H∥1).

Then, D[f(A)] is called the (Fréchet) derivative of f at A
and D[f(A)](H) is the directional derivative of f at A in
the direction H . The derivative of f induces a map from H
into L(H) given by D[f ] : A → D[f(A)]. If this map is also
differentiable at A, then f is said to be twice differentiable at
A with the corresponding second-order derivative given by a
bilinear map D2[f(A)] : H×H → H.

III. MAIN RESULTS

Let ρn and σn be random density operators such that
ρn

w−→ ρ and σn
w−→ σ in trace norm. Further, let (rn)n∈N

denote a diverging positive sequence. In the following, null
and alternative refers to the scenarios ρ = σ and ρ ̸= σ,
respectively, while two-sample signifies that both ρ and σ are
estimated. The following result provides sufficient conditions
under which limit distribution for quantum relative entropy
exists.



Theorem 1 (Limit distribution for quantum relative entropy)
Let ρn ≪ σn ≪ σ and ρn ≪ ρ ≪ σ be such that
D (ρn∥σn) < ∞, D (ρ∥σ) < ∞, and there exists a constant c
satisfying P

( ∥∥ρnσ−1
n

∥∥
∞ > c

)
→ 0. Then, the following hold:

(i) (Two-sample alternative) If
(
rn(ρn−ρ), rn(σn−σ)

) w−→
(L1, L2) in trace norm, then

rn
(
D (ρn∥σn)− D (ρ∥σ)

)
w−→ Tr [L1(log ρ− log σ)− ρD[log σ](L2)]. (2)

(ii) (Two-sample null) If ρ = σ and
(
rn(ρn − ρ), rn(σn −

ρ)
) w−→ (L1, L2) in trace norm, then

r2nD (ρn∥σn)
w−→Tr

[ρ
2
D2[log ρ](L1 − L2, L1 − L2)

]
+Tr [L1D[log ρ](L1 − L2)]. (3)

Due to space limitations, we omit the proof of Theorem 1
(and other results below) and refer the reader to an extended
version [50]. The key idea in the proof relies on applying an
operator version of Taylor’s theorem to the function, (x, y) 7→
x(log x− log y), and showing that the remainder terms (e.g.,
second and higher order terms in the alternative case) vanish
under the conditions stated in the theorem. At a technical
level, the arguments use uniform Bochner-integrability of the
remainder terms (guaranteed under the assumptions) to justify
interchange of limits, trace, and integrals. We note that the
regularity conditions in Theorem 1 are same as that of [22,
Theorem 1] specialized to the discrete setting. Also, observe
that analogous to the classical case, the limits depend on
whether ρ = σ (null) or ρ ̸= σ (alternative), and that the
convergence rate is faster in the former.

We briefly discuss the regularity assumptions in the above
theorem. In the infinite dimensional case, D (ρ∥σ) can be
unbounded even if the support conditions ρ ≪ σ are satisfied.
This necessitates the finiteness assumption on the quantum
relative entropies above. The condition P

( ∥∥ρnσ−1
n

∥∥
∞ >

c
)
→ 0 imposes a stochastic boundedness assumption on the

operator ρnσ
−1
n and is a natural condition for the existence

of distributional limits even in the classical case (see [22,
Theorem 2 and Remark 1]). To see this, take ρ = σ = |0⟩⟨0|,
and

ρn =
(
1− n−1

)
|0⟩⟨0|+ n−1|n⟩⟨n|,

σn =
(
1− e−n2)

|0⟩⟨0|+ e−n2

|n⟩⟨n|,

where |i⟩ denotes the ith basis element of H (in an arbitrary
orthonormal basis of H) and |i⟩⟨i| denotes the unique operator
which takes |i⟩ to |i⟩ and |j⟩, for j ̸= i, to the zero element.
Note that

∥∥ρnσ−1
n

∥∥
∞ diverges. Observe that

√
n(ρn−ρ)

w−→ 0

and
√
n(σn − σ)

w−→ 0, where 0 denotes the zero operator.
However, it is easily seen by a straightforward computation
that D (ρn∥σn) diverges. Hence, the limit

√
nD (ρn∥σn) does

not exist and Theorem 1 does not hold.
In the finite dimensional case, Theorem 1 leads to the

following corollary.

Corollary 1 (Finite dimensional case) Let ρn ≪ σn ≪ σ and
ρn ≪ ρ ≪ σ. The following hold:

(i) (Two-sample alternative) If
(
rn(ρn−ρ), rn(σn−σ)

) w−→
(L1, L2), then (2) holds.

(ii) (Two-sample null) If ρ = σ and
(
rn(ρn − ρ), rn(σn −

ρ)
) w−→ (L1, L2), then (3) holds.

Since all norms are equivalent in finite dimensions, the
choice of the norm in the space of density operators with
respect to which weak convergence is considered does not
matter. Also, note that the stochastic boundedness assumption
used in Theorem 1 is not required.

Remark 1 (One-sample null and alternative) The one-sample
case refers to the setting when σn = ρ (null) or σn = σ
(alternative) for all n ∈ N, i.e., when only ρ is approximated
by ρn. In this case, the respective limits can be obtained by
letting L2 = 0 in (2) and (3).

Simplified expressions for the limit variables in Theorem 1
exist when all relevant density operators commute, as stated
in the following corollary.

Corollary 2 (Commutative case) If all operators in Theorem
1 commute, then

rn
(
D (ρn∥σn)− D (ρ∥σ)

)
w−→ Tr

[
L1(log ρ− log σ)− L2ρσ

−1
]
. (4)

Additionally, when ρ = σ, then

r2nD (ρn∥σn)
w−→ 1

2
Tr
[(
L1 − L2

)2
ρ−1

]
. (5)

Equations (4) and (5) recovers [22, Theorem 2] specialized
to the discrete setting with finite support, which is the classical
analogue of Theorem 1 pertaining to KL divergence.

Specializing Theorem 1 to von Neumann entropy leads to
the following result.

Corollary 3 (Limit distribution for von Neumann entropy) Let
ρn ≪ ρ. If rn(ρn − ρ)

w−→ L in trace-norm, then

rn
(
H(ρn)− H(ρ)

) w−→ −Tr [L log ρ]. (6)

The above claim follows from (2) with L1 = L and L2 = 0
by noting that the regularity conditions in Part (ii) of Theorem
1 are satisfied with σn = σ = I for all n ∈ N, and using
the relation H(ρ) = −D (ρ∥I), where I denotes the identity
operator. Since I is not a quantum state, here we used that
the definition of quantum relative entropy in (1) extends to
the case where σ is replaced by I without affecting any of the
claims.

It is well-known that H(ρ) = H(λ), where λ ∈ Hd denotes
the diagonal operator comprising of the eigenvalues of ρ
arranged in non-increasing order. In other words, H(ρ) equals
the Shannon entropy of the probability distribution composed
of the eigenvalues of ρ. An unbiased estimator of the spectrum
of a quantum state is given by the EYD algorithm [43],
[44] that outputs a Young’s diagram as its estimate. In [46,
Theorem 3.1], the limit distribution of this estimator with a



scaling rate n1/2 is characterized in terms of a d-dimensional
Brownian functional B = (B1, . . . , Bd). From Corollary 3
and the discussion above, it then follows that the asymptotic
distribution of the EYD algorithm based estimator of H(ρ) is
governed by (6) with rn = n1/2, L = diag(B) and ρ = λ,
where diag(·) denotes the operation of representing a vector
as the diagonal elements of a matrix.

IV. APPLICATION

Limit theorems for classical divergences have several appli-
cations in statistics, computational science and biology such
as constructing confidence intervals for hypothesis testing
[21], auditing of differential privacy [22], and biological data
analysis [23]. Here, we consider an application of Theorem
1 in establishing performance guarantees for the problem of
testing for the quantum relative entropy between unknown
states in the finite dimensional setting. The relevant multi-
hypothesis testing problem can be formulated as2

Hi : ϵi < D (ρi∥σi) ≤ ϵi+1, (7)

where ϵi ≥ 0 satisfy ϵi+1 > ϵi for i ∈ I = {0, . . . ,m −
1}. We are interested in the setting where approximately nd2

identical copies of the unknown states are available for the
tester. The goal then is to design a test Tn = {Mn(i), i ∈ I}
with Mn(i) ≥ 0 for all i, and

∑
i∈I Mn(i) = I that achieves

a specified performance, i.e., an m-outcome positive operator-
valued measure (POVM) with index set I (see e.g., [16] for
further details). Denoting the original hypothesis by H and
the test outcome by Ĥ , the performance of Tn is quantified
by the error probabilities

αi,n(Tn, ρ⊗n
i ) := P(Ĥ ̸= i|H = i) = Tr

[
ρ⊗n
i

∑
j ̸=i

Mn(j)

]
.

A test Tn is said to achieve level τ if αi,n(Tn, ρ⊗n
i ) ≤ τ for

every i ∈ I. A sequence of tests (Tn)n∈N is asymptotically
said to achieve level τ if lim supn→∞ αi,n(Tn, ρ⊗n

i ) ≤ τ for
every i ∈ I.

A pertinent approach to realize a hypothesis test is to first
perform tomography of the states to obtain estimates, ρ̂n, σ̂n,
and then compute the relative entropy between them. A stan-
dard class of tests (motivated from the Neyman-Pearson theo-
rem) then decides in favor of Hi if ti,n < D (ρ̂n∥σ̂n) ≤ ti+1,n,
where ti,n for 0 ≤ i ≤ m are critical values chosen according
to the desired level τi ∈ (0, 1] for ith error probability. Each
such test (statistic) Tn induces a POVM indexed by I, denoted
by T tom

n

(
{ti}i∈I

)
, for which we will use the shorthand T tom

n .
Let αi,n

(
T tom
n , ρ⊗n

i

)
= P(Tn ̸= i|H = i) denote the error

probability for the test statistic Tn given the ith hypothesis is
true.

To obtain concrete performance guarantees for the afore-
mentioned hypothesis test, we consider a specific tomographic
estimator for density operators based on Pauli measurements.
This can be considered as a quantum analogue of the classical

2Note that here (ρi, σi), 1 ≤ i ≤ m, denote pairs of quantum states and
not random density operators as was used until now.

plug-in estimator based on empirical probability distributions.
We first describe the estimator and characterize its limiting
distribution, which will then be used to construct the test
statistic for (7).

A. Tomographic Estimator of Quantum States

Let d = 2N for some integer N , and {γj}d
2−1

j=0 denote the
set of multi-qubit (N -qubit) Pauli operators constructed as the
N -fold tensor product of standard Pauli operators acting on
a qubit. Specifically, γj =

⊗N
i=1 γj,i with γj,i ∈ {Rk}3k=0,

where {Rk}3k=0 denotes the single-qubit Pauli basis with the
following representations in the standard basis:

R0 =

[
1 0

0 1

]
, R1 =

[
0 1

1 0

]
, R2 =

[
0 −i

i 0

]
,

R3 =

[
1 0

0 −1

]
.

We may take γ0 = I . The multi-qubit Pauli operators are
Hermitian and form an orthogonal operator basis for the real
vector space Hd with respect to the Hilbert-Schmidt inner
product. Consequently, any multi-qubit density operator ρ can
be written as

ρ =
I

d
+

1

d

d2−1∑
j=1

sj(ρ)γj , (8)

with sj(ρ) = Tr [ργj ]. Note that γj , for 1 ≤ j ≤ d2 − 1, are
traceless and have eigenvalues ±1. Moreover, any operator of
the form (8), with sj(ρ) replaced by sj such that ∥s∥2 ≤ 1, is
a valid density operator, where s = (s1, . . . , sd2−1). In partic-
ular, ∥s∥2 = 1 corresponds to pure states, while ∥s∥2 < 1
corresponds to mixed states, where pure and mixed states
refer to a state ρ such that Tr

[
ρ2
]
= 1 and Tr

[
ρ2
]
< 1,

respectively. Let Λ+
j (resp. Λ−

j ) and P+
j (resp. P−

j ) denote
the set of outcomes and eigenspace corresponding to the
eigenvalue +1 (resp. −1) of γj , respectively. Then

sj(ρ) = s+j (ρ)− s−j (ρ),

where s+j (ρ) := Tr
[
ρP+

j

]
and s−j (ρ) := Tr

[
ρP−

j

]
= 1 −

s+j (ρ).
Assume that identical copies of ρ and σ are available as

desired, on which measurements using Pauli operators can be
performed and the outcomes recorded. Let Ok(j, ρ) denote
the kth measurement outcome using γj on ρ. A tomographic
estimator of ρ and σ is then given by

ρ̂n = 1∥ŝ(n)(ρ)∥2≤1Ŝn(ρ) +
1∥ŝ(n)(ρ)∥2>1∥∥ŝ(n)(ρ)∥∥

2

Ŝn(ρ), (9a)

and

σ̂n =
I

nd
+

(
1− 1

n

)(
1∥ŝ(n)(σ)∥2≤1Ŝn(σ)

+
1∥ŝ(n)(σ)∥2>1∥∥ŝ(n)(σ)∥∥

2

Ŝn(σ)

)
,



respectively, where

Ŝn(ρ) :=
I

d
+

1

d

d2−1∑
j=1

ŝ
(n)
j (ρ)γj ,

ŝ
(n)
j (ρ) :=

1

n

n∑
k=1

1Ok(j,ρ)∈Λ+
j
− 1Ok(j,ρ)∈Λ−

j
, j ̸= 0,

ŝ(n)(ρ) :=
(
ŝ
(n)
1 (ρ), . . . , ŝ

(n)
d2−1(ρ)

)
.

It follows from the above discussion that ρ̂n, σ̂n ∈ Sd for all
n ∈ N. Note that the extra term (negligible asymptotically)
I/nd ensures that σ̂n > 0 so that ρ̂n ≪ σ̂n and D (ρ̂n∥σ̂n)
is finite. Also, observe that to construct ρ̂n and σ̂n, we need
n(d2 − 1) independent copies, each of ρ and σ, available for
measurement.

Let N(c, v2) denote the one-dimensional normal distribu-
tion with mean c and variance v2. The following result shows
that the limit distribution for estimators of quantum relative
entropy based on Pauli tomography is Gaussian.

Proposition 1 (Limit distribution for tomographic estimator)
Let ρ, σ > 0. Then

√
n
(
D (ρ̂n∥σ)− D (ρ∥σ)

) w−→ W1 ∼ N
(
0, v21(ρ, σ)

)
,

√
n
(
D (ρ̂n∥σ̂n)− D (ρ∥σ)

) w−→ W2 ∼ N
(
0, v22(ρ, σ)

)
,

where

v21(ρ, σ) :=

d2−1∑
j=1

4s+j (ρ)s
−
j (ρ)

d2
Tr [γj(log ρ− log σ)]

2
,

v22(ρ, σ) := v21(ρ, σ) +

d2−1∑
j=1

4s+j (σ)s
−
j (σ)

d2
Tr [ρD[log σ](γj)]

2
.

The proof of Proposition 1 follows by an application of
Corollary 1. The main ingredient of the proof is to show
that

(√
n(ρ̂n − ρ),

√
n(σ̂n − σ)

) w−→ (Lρ, Lσ), where Lρ :=∑d2−1
j=1 γjZj(ρ) and Zj(ρ) ∼ N

(
0, 4s+j (ρ)s

−
j (ρ)/d

2
)
. The

claim then follows from (2) by noting that all relevant reg-
ularity conditions are satisfied. In particular, the assumption
ρ, σ > 0 ensures that the support conditions are satisfied.

B. Performance Guarantees for Quantum Multi-hypothesis
Testing

For simplicity of presentation, we will assume that σi =
σ for all i ∈ I with σ known for the test in (7). Such a
scenario arises, for instance, when testing for the mixedness
of an unknown state ρ with respect to the maximally mixed
state, σ = πd. Also, for τ ∈ [0, 1], let

Q−1(τ) = inf

{
z ∈ R : (2π)−1/2

∫ ∞

z

e−u2/2du ≤ τ

}
,

be the inverse complimentary cumulative distribution function
of the standard normal distribution N(0, 1). The following
proposition provides a test statistic for the multi-hypothesis
testing problem in (7) by utilizing the limit distribution for
quantum relative entropy and characterizes its error probabil-
ities.

Proposition 2 (Performance of multi-hypothesis testing) Let
τ ∈ (0, 1], and ρi, σ > 0 for i ∈ I satisfy the hypotheses in
(7) for σi = σ therein. Let D̂n = D (ρ̂n∥σ) with ρ̂n given in
(9a). Then, the test statistic

Tn =
∑
i∈I

i1D̂n∈Li,n(c)
,

with Li,n(c) := (ϵi + cn−1/2, ϵi+1 + cn−1/2), asymptotically
achieves a level τ provided

c ≥ 2dQ−1(τ)| log b|,

where b denotes the minimum of the eigenvalues of σ and ρi
over all i ∈ I.

The proof of Proposition 2 follows by an application of
Proposition 1 and Portmanteau theorem [51, Theorem 2.1].
The threshold c achieving a desired asymptotic level τ is de-
termined by utilizing the knowledge that

√
n
(
D̂n−D (ρi∥σ))

converges in distribution to a centered normal under hypothesis
i, whose variance v21(ρi, σ) can be uniformly bounded for all
i ∈ I.

Remark 2 (Growing number of hypotheses) It can be shown
that Proposition 2 continues to hold even when the number of
hypotheses scales with n, given the new hypotheses boundaries
are chosen consistent with the previous ones and are well-
separated, i.e., mini∈In

D (ρi∥σ)−ϵi = ω(n−1/2), where ω(·)
denotes the asymptotic little omega notation and In is the
index set of hypotheses that grows with n (In ⊆ In+1 for
every n ∈ N).

V. CONCLUDING REMARKS

This paper studied limit distributions for a certain class of
estimators of quantum relative entropy. Taking recourse to an
operator version of Taylor’s theorem, the limit distributions
are characterized in terms of trace functionals of first or
second-order Fréchet derivatives of elementary functions. We
employed the derived results to show that the asymptotic
distribution of an estimator of quantum relative entropy based
on Pauli tomography of states is normal. We then utilized this
knowledge to propose a test statistic for a multi-hypothesis
testing problem and characterized its asymptotic performance.

Looking forward, several open questions remain. One perti-
nent question concerns the rate of convergence of the empirical
distribution of the divergence to its limit in the flavor of classi-
cal Berry-Esseen theorem. Of interest further is to understand
the asymptotic and non-asymptotic behavior of other classes of
estimators such as those based on variational methods. Lastly,
it would also be beneficial to study the statistical behaviour
of other divergences such as quantum χ2 divergence [52] and
quantum Rényi divergences [11], [13], [14], [53], [54] (see
[50] for further results on quantum Rényi divergences).
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