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Abstract—We consider the problem of simulating a two-
sender multiple access channel (MAC) for fixed product inputs,
where each sender transmits a message to the decoder over
a rate-limited noiseless link based on its input and unlimited
randomness shared with the decoder. As our main contribution,
we characterize the one-shot communication cost region via
almost-matching inner and outer bounds phrased in terms of the
smooth max-information of the channel. The achievability relies
on a rejection-sampling algorithm to simulate a quantization
channel between each sender and decoder, and producing the
final output based on the output of these intermediate channels.
The converse follows via information-spectrum based arguments
relating operational quantities to information measures. Our
one-shot results recover the single-letter asymptotic rate region
for MAC simulation with fixed, independent and identically
distributed product inputs, that was obtained in [Kurri et al.,
IEEE Transactions on Information Theory 68, 7575 (2022)].
We extend our result to quantum-to-classical channels with
a separable decomposition [Atif et al., IEEE Transactions on
Information Theory 68, 1085 (2022)], for which we obtain a
similar characterization.

I. INTRODUCTION

The channel simulation problem deals with the task of
quantifying the minimum amount of communication required
to establish correlation remotely, as dictated by the input-
output joint distribution of the channel to be simulated. The
most basic point to point channel simulation setup consists of
an encoder-decoder pair that with access to shared randomness
and communication over a noiseless rate-limited link achieves
the channel simulation task. More specifically, the encoder
observes a random variable, say X with distribution qX ,
and based on the shared randomness, sends a message to
the decoder. Based on this message and shared randomness,
the decoder outputs a random variable Y . The aim of the
protocol is to ensure that the trace distance between the
joint distribution (X,Y ) and the joint distribution induced by
passing the source X through a discrete memory less channel
q(Y |X) is as small as possible. The channel simulation task
is closely related to the task of creating a desired joint
distribution between two distributed parties, also known as
strong coordination [1].

Here, we consider the problem of simulating a two-sender
classical and quantum to classical multiple-access channel
(MAC). We assume that the respective encoders and decoder
have access to unlimited shared randomness. This framework
was first investigated by Bennett et al. [2] to establish a so-
called ‘reverse Shannon theorem’ to simulate a noisy channel
from a noiseless channel in the asymptotic independent and
identically distributed (iid) regime. They showed that the least

communication cost for this purpose is equal to the mutual
information, I(X;Y ), between the input and output of the
channel. The minimum one-shot rate for simulating a point to
point classical channel was ascertained in [3]. Extensions to
broadcast channels were obtained in [3], and recently extended
to the quantum setting [4].

In both the point to point and broadcast channel simulation
tasks, one may gain intuition on the scheme achieving the
minimal communication rate as follows. Consider the case
of point to point channel simulation. Since both the encoder,
say Alice, and the decoder, Bob, knows the channel to be
simulated, Alice can determine the channel output at her end
and then compress it ‘optimally’ and send it to Bob using the
rate limited link. Bob then just outputs the target sequence after
decompressing what he received from Alice. Similar intuition
also works for the broadcast channel simulation problem.
However, this approach breaks down for the MAC since there
are two senders involved. More specifically, although each
sender knows the MAC to be simulated, they cannot "locally"
simulate the channel since the input of the other sender is
unknown. Hence, novel schemes are required to circumvent
this technical hurdle, which we address in this work.

While there is a comprehensive literature on simulating a
point to point channel (both classical and quantum, in one-
shot and asymptotic iid setting) and broadcast channel ( [2],
[4]–[9]), only some of the corresponding results for MAC are
known. In this regard, the asymptotic iid rate region for a
classical MAC was previously given in [10]. Additionally, a
matching converse for the more general case when shared
randomness at either parties is unbounded and the decoder
has access to side information correlated with the inputs
such that the inputs are independent conditioned on this side
information. An inner bound for MAC simulation in [10]
was derived by using the so-called output-statistics of random
binning (OSRB) technique of Yassaee et al. [8]. A matching
outer bound was proven by using the continuity property of
the mutual information.

In this work, we obtain the first tight one-shot rate region
(tight up to the smoothing fudge terms) for simulating a
classical MAC with inputs (X1, X2) and output Y , and the
channel is represented by the conditional probability distribu-
tion qY |X1,X2

. In order to simulate qY |X1,X2
, encoder Ej , for

j ∈ {1, 2}, at sender j sends a message Mj ∈ [1 : 2Rj ] to the
decoder D over their respective noiseless links based on their
individual observations and shared randomness with the de-
coder. We assume unlimited shared randomness S1(|S1| = ∞)
between E1 and D and S2(|S2| = ∞) between E2 and D.



Subsequent to deriving the one-shot result for purely classical
MAC, we specialize our result to the asymptotic iid setting
and show that it recovers [10, Theorem 1, Theorem 4] (when
simplified to our model by setting the inputs X1, X2 to be
independent, the side information Z to be trivial and both the
shared randomness to infinity). We then characterize the rate
region for the so-called classical scrambling quantum-inputs
and classical output MAC, referred to as classical scrambling
QC-MAC.

A general recipe to obtain an inner bound on the rate region
is via the technique of rejection sampling. One of the main
technical hurdles, besides unavailability of both the inputs at
the encoders, preventing the import of earlier results is that
this task cannot be seen as carrying out two point to point
channel simulation. The core reason is due to the fact that
the output must be generated correlated with both the inputs.
This is resolved by defining the appropriate auxiliary random
variables, which are quantized versions of the respective inputs
such that they approximately simulate the channel.

II. TASK FORMULATION FOR FULLY CLASSICAL MAC

We use the standard notations of information theory from
[11], [12]. We start by giving the formal definition of a 2-user
MAC channel simulation code.

Definition 1 (Classical MAC simulation): An (R1, R2, ε)
simulation code for a 2-independent user fully classical MAC
qY |X1X2

with inputs qX1
⊗qX2

and access to unlimited shared

randomness between Sender 1 S1↔ Receiver and Sender 2S2↔
Receiver, consists of:

• A pair of Encoders of form E1⊗E2, such that: Ej : Xj ×
Sj → [1 : 2Rj ], for j ∈ {1, 2};

• Two independent noiseless rate-limited links of rate Rj ,
j ∈ {1, 2} and;

• A decoder D : [1 : 2R1 ]× S1 × [1 : 2R2 ]× S2 → Y s.t.;

E
qX1

⊗qX2

∣∣∣∣∣∣∣∣D ◦
(

2
⊗
j=1

Ej
){

2
⊗
j=1

(
pXj ⊗ pSj

)}
− qY |X1X2

∣∣∣∣∣∣∣∣
1

≤ ε

III. REJECTION SAMPLING FOR CHANNEL SIMULATION

In this section we give the key tool used to establish our re-
sults for one-shot fully classical and classical scrambling QC-
MAC simulation. Although this tool is not new and has a quite
exhaustive literature ( [4], [7], [13], [14]), we state the version
that is used in our proofs. We prove the achievability and the
converse for our classical rejection sampling technique aka
one-shot message compression or one-shot covering lemma.
This can be thought of as a ’partial’ one-shot analogue of the
widely applicable OSRB technique developed by Yassaee et al.
in [8] for proving alternative achievability bounds for problems
in classical Shannon theory including the channel simulation
task, carried out in [15]. The only known non-asymptotic one
shot analogue of OSRB techniques was developed by the same
authors. But the rate expressions there are in terms of empirical
entropies which may be less operational than the state of art,
smoothed Rényi entropies.

We first state an achievable rate for the one-shot message
compression via the rejection sampling. This is nothing but

an upper bound on the communication required to carry out
rejection sampling. The idea is simple and useful for our
purpose. The rate defining quantity is smoothed max-mutual
information as defined in Definition 3 later.

Lemma 1: Let ε > 0 and pX,Y denote a bipartite probability
distribution and S ∼ pS be the shared randomness between
sender Alice and the receiver Bob. Alice sends a message
m(x, s) ∈ M to Bob, so that Bob can generate a sample
y(m, s)

ε∼ pY |X=x. The minimum rate for the above task is:

R := log |M| ≤ Iεmax(X;Y ) +O

(
log log

1

ε

)
+ 1,

and the resulting distribution p̃X,Y satisfies ∥p̃X,Y −pX,Y ∥1 ≤
10ε and ∥p̃Y − pY |X=x∥1 ≤ 10ε.

The proof of the above lemma can be deduced from [7,
Theorem 2]. We now give an ‘almost’ matching lower bound
on the number of bits communicated in the rejection sampling
algorithm for message compression. We use the word ‘almost’
as the lower bound that we show differs from the upper bound
in the additive fudge factors and the smoothing parameter in
the entropic quantity but the rate governing entropy remains
the same, which is Iεmax.

Now, suppose that pX,Y be the given distribution, S be the
shared randomness available at sender and receiver and let
p̃X,Y be the probability distribution produced by the rejec-
tion sampling algorithm. We further have that for any given
ε > 0, ∥pX,Y − p̃X,Y ∥1 ≤ 10ε. Rejection sampling algorithm
produces the following Markov chain X → (M,S) → Y ,
where M is the classical message communicated. Lastly, we
also consider ε, δ > 0 as the ‘smoothing’ and ‘continuity’
parameters henceforth. One can also set δ = ε. The converse
for the above task (of Lemma 1) is as follows:

Lemma 2: Let pX,Y denote a bipartite probability distri-
bution and S ∼ pS shared randomness between the sender
and the receiver. Suppose there exists a rejection sampling
algorithm of Lemma 1 that outputs a resulting distribution
p̃X,S,M,Y satisfying ∥p̃X,Y − pX,Y ∥1 ≤ 10ε and ∥p̃Y −
pY |X=x∥1 ≤ 10ε. Then for any given ε, δ > 0 the rate of
the rejection sampling algorithm is lower bounded by:

R := log |M| ≥ I20ε+δ
max (X;Y )p − log

(
1

ε

)
− 1

The proof is similar to [7, Theorem 4].
Definition 2: The max divergence between any two quan-

tum states ρ and σ (analogously between any two probability
distributions p and q on the support X ) is defined as:

Dmax(ρ||σ) := log∥σ−1/2ρσ−1/2∥∞;

Dmax(p||q) := logmax
x∈X

[
p(x)

q(x)

]
.

In order to obtain the Shannon mutual information as the limit
of the max mutual information in the asymptotic iid limit,
we need to define their smoothed versions by replacing the
distribution p (or the state ρ) by a distribution (or state) which
lies in an ε(> 0)-ball around p (or ρ) and not perturbing q
(or σ). For this smoothing purpose we define an ε (> 0)-ball



as Bε(p) := {p′ ∈ P≤ : ∥p − p′∥1 ≤ ε}. For brevity, we
henceforth use the notation p

ε
≈ q ⇒ ∥p−q∥1 ≤ ε and X ε∼ p

to denote that X has a distribution that is ε-close to p in ℓ1
norm. Lastly, p⊗n(xn) :=

n

Π
i=1

p(xi).
Definition 3: For any ε > 0, the ε-smoothed max-mutual

information evaluated with respect to a bipartite distribution
pX,Y is defined as:

Iεmax(X;Y )p := inf
p′
X,Y ∈Bε(pX,Y )

Dmax(p
′
X,Y ||pX × pY ).

For ε = 0, we refer to the above quantity simply as Imax.
Finally, for deriving our results for the QC-MAC in Section

VI, we use the so-called coherent rejection sampling or convex
split lemma (first formulated in [16]). Again, this is the core
idea used to prove the one-shot measurement compression
theorem in [14], which can be modified to carry out the QC-
MAC simulation task, as we do here. We remark that the
additive fudge term in the convex split lemma is O(log 1/ε)
in contrast to O(log log 1/ε) in the classical setting. This is
because the classical rejection sampling ’fine tunes’ the input
to be correlated with only the accepted sample from the shared
randomness whereas the convex split step correlates input with
all the registers of the shared randomness.

IV. ONE-SHOT RATE REGION (COST) OF CLASSICAL MAC

A. Achievability

Lemma 3: For any given ε > 0, there exists an (R1, R2, 2ε)
one-shot MAC simulation protocol satisfying

R1 ≥ Iεmax(X1;U1)p +O

(
log log

1

ε

)
+ 1;

R2 ≥ Iεmax(X2;U2)p +O

(
log log

1

ε

)
+ 1,

such that there exists auxiliary random variables U1, U2 and a
distribution pX1,X2,U1,U2,Y := qX1

pU1|X1
qX2

pU2|X2
pY |U1,U2

satisfying

Σ
u1,u2

pX1,X2,U1,U2,Y (x1, x2, u1, u2, y) = qX1,X2,Y (x1, x2, y),

The above region is evaluated with this p and the cardinalities
of U1, U2 are finite.

Proof: Let qX1
⊗qX2

be a given input distribution and fix
an ε > 0. We will use the rejection sampling algorithm (with
access to pX1,X2,U1,U2

) of Lemma 1 twice to come up with
two encoder-decoder pairs to simulate qY |X1,X2

via {Uj}2j=1.
The key idea is to use the least amount of communication
to facilitate the decoder to sample {Uj}2j=1

ε∼ pUj |Xj=xj
.

Towards this end, let the encoder-decoder pair for sender-
1 is denoted by (E1,D1) and that for sender-2 by (E2,D2).
These encoder-decoder pairs produces a joint distribution on
X1, X2, U1, U2, Y that is close to the distribution p mentioned
in the theorem statement.

• Sender-j for j ∈ {1, 2}: The shared randomness be-
tween the pair (Ej ,Dj) is distributed according to the
marginal pUj (uj) := ΣxjqXj (xj)pUj |Xj

(uj |xj). Using
this, (Ej ,Dj) perform rejection sampling (Lemma 1) so

that the output distribution of Uj from Dj is denoted by
palgoUj

ε
≈ pUj |Xj=xj

.
• Decoding: After having decoded U1, U2 from D1,D2 the

receiver finally generates Y ∼ pY |U1,U2
. Thus, the overall

decoder D = pY |U1,U2
◦ (D1 ⊗D2).

Thus, our algorithm results in the overall distribution

palgoX1,X2,U1,U2,Y
= qX1

qX2
palgoU1

palgoU2
pY |U1,U2

.

Note that palgoUj
(uj) ≈ pUj |Xj

(uj |xj) for j ∈ {1, 2} and Xj =
xj with probability qXj (xj). Finally, we need to show that

E
qX1

⊗qX2

∥palgoY |X1,X2
− qY |X1,X2

∥1 ≤ 2ε. This follows by the

following chain of inequalities:

E
qX1

⊗qX2

∥palgo
Y |X1,X2

− qY |X1,X2
∥1

≤ E
qX1

⊗qX2

∥palgo
Y |X1,X2

− pY |X1,X2
∥1

+ E
qX1

⊗qX2

∥pY |X1,X2
− qY |X1,X2

∥1

≤ E
qX1

⊗qX2

∥palgoY |X1,X2
− pY |X1,X2

∥1 + ∥pX1,X2,Y − qX1,X2,Y ∥1

= E
qX1

⊗qX2

∥palgoY |X1,X2
− pY |X1,X2

∥1

≤ E
qX1

⊗qX2

∥ Σ
u1,u2

[
palgo
U1

(u1)p
algo
U2

(u2)PY |U1=u1,U2=u2

−pU1|X1
(u1|x1)pU2|X2

(u2|x2)PY |U1=u1,U2=u2

]
∥1

≤ E
qX1

⊗qX2

∥palgo
U1
palgoU2

− pU1|X1
pU2|X2

∥1

≤ E
qX1

⊗qX2

∥palgo
U1
palgoU2

− palgoU1
pU2|X2

∥1

+ ∥palgo
U1
pU2|X2

− pU1|X1
pU2|X2

∥1
≤ E

qX1
⊗qX2

∥palgo
U1

∥1∥palgoU2
− pU2|X2

∥1

+ E
qX1

⊗qX2

∥pU2|X2
∥1∥palgo

U1
− pU1|X1

∥1 ≤ 2ε.

We have thus shown that there exists an (R1, R2, 2ε) code for
simulating qY |X1,X2

. We can now optimize over all U1, U2

satisfying (X1, X2) → (U1, U2) → Y (for the fixed qX1
×qX2

)
and we take the union over all the distribution pX1,X2,U1,U2,Y

satisfying the conditions of Lemma 3, calling the resultant
region as the optimal achievable region. Thus, for a fixed input
the above mentioned region is an inner bound for simulating
a classical MAC.

B. Converse

Lemma 4: Let ε ∈ (0, 1/2). Then, a (R1, R2, ε) MAC
simulation algorithm satisfies

Rj ≥ I4εmax(Xj ;Uj)p − log

(
1

ε

)
, j ∈ {1, 2},

for some distribution pX1,X2,U1,U2,Y = qX1
qX2

pU1|X1
×

pU2|X2
pY |U1,U2

such that

||pX1,X2,Y − qX1,X2,Y ||1 ≤ 5ε. (1)

We defer the proof in the full version [17]. Although we
assume that the amount of shared randomness is unlimited, we



only use as much shared randomness as required for optimal
message compression. In this sense, our simulation protocol
is nearly optimal. The assumption that shared randomness is
unlimited ensures that the sum rate constraints are trivial and
the rate region is as given by Lemma 3 and 4. Furthermore,
if one of the senders is trivial (does not send anything, that
is, considering the task of a point to point channel simulation)
the optimal U = Y . We henceforth recover the asymptotically
optimal point-point channel simulation rate of I(X;Y )qXY

as shown in [3]. Moreover, for the point to point case our
technique can be straight away extended to obtain the universal
channel simulation by identifying optimal U = Y . However,
the universality is not straightforward for MAC as after max-
imizing over the inputs (the worst case scenario) the optimal
U1, U2 for R1 need not be optimal for R2 and vice-versa.
Alternatively, the optimal (U1, U2) pair from the worst-case
(R1, R2) pair need not satisfy (X1, X2) → (U1, U2) → Y .
It is this subtlety that finally Y should be generated jointly
from U1, U2, which prevents the analysis of MAC simulation
as simulation of two independent point-point channels.

V. ASYMPTOTIC IID RATE REGION

The inner bound can be straight away extended to obtain
the asymptotic iid rate region, since the n-fold extension of
the input and the auxiliary random variables will be iid. The
asymptotic equipartition property (AEP [18]) for Iεmax gives:

lim
ε→0

lim
n→∞

1

n
Iεmax(X

n
j , U

n
j )pn = I(Xj ;Uj)p

and leads to the asymptotically optimal inner bound Rj ≥
I(Xj ;Uj)p. Note that obtaining the asymptotically optimal
outer bound is not so straight forward as the n-fold extension
of the random variable U need not be iid. So, we prove a weak
converse.

Proof: Consider the n-fold extension of the simulation
code and the code induced distribution pnXn

1 ,Un
1 ,Xn

2 ,Un
2 ,Y n :=

q⊗n
X1
q⊗n
X2
pUn

1 |Xn
1
pUn

2 |Xn
2
pY n|Un

1 ,Un
2

in Lemma 4. Consider the
following inequalities on the rate of the protocol:

nRj ≥ Iεmax(X
n
j ;U

n
j )pn − log

1

ε
(a)
= Imax(X

n
j ;U

n
j )p′n − log

1

ε
(b)

≥ I(Xn
j ;U

n
j )p′n − log

1

ε
(c)

≥ I(Xn
j ;U

n
j )pn − 6ε log |Xj |n − 8h2(ε)− log

1

ε
(d)

≥ nI(Xj ;Uj)p − 6ε log |Xj |n − 8h2(ε)− log
1

ε

⇒ Rj ≥ lim
ε→0

lim
n→∞

[
nI(Xj ;Uj)p − 6ε log |Xj |n − g(ε)

n

]
⇒ Rj ≥ I(Xj ;Uj)p,

where (a) holds as p′ ∈ Bε(p) be the optimizer
for Iεmax; (b) holds by the fact the Iεmax(X;Y )p ≥
I(X;Y )p − O

(
log 1

ε

)
for any joint distribution pXY

[19]; (c) follows from continuity of mutual information

[20, Lemma 4] with g(ε) = 8h2(ε) + log 1
ε ; (d) fol-

lows by I(Xn
j ;U

n
j ) =

∑n
i=1

[
H(Xj,i)−H(Xj,i|Un

j )
]

≥∑n
i=1 [H(Xj,i)−H(Xj,i|Uj, i)] ≥

∑n
i=1 I(Xj,i;Uj,i), using

the facts that the input is a product distribution and condi-
tioning reduces the entropy and lastly, following the single
letterization steps of time sharing from the iid converse in [10,
Theorem 3] (where we abuse the notation slightly to denote the
time shared Uj also as Uj). We thus recover the asymptotically
optical region of [10, Theorem 1, Theorem 3].

VI. RATE REGION (COST) OF QUANTUM-CLASSICAL MAC

In this section, we consider a MAC with the two input
quantum states in tensor product (independent) and the output
as a classical state (random variable or equivalently a proba-
bility distribution). Generally, a device which takes input as a
quantum state and outputs a probability vector is thought of as
a measurement device. Hence we can think of our 2-quantum
input and 1-classical output QC MAC as a measurement
channel. There can be several configurations of this models.
We consider the following model:

Classical scrambling QC MAC (CS-QC MAC): Channel
first does a ‘separable’ measurement on two inputs and then
scrambles them according to qY |X1,X2

. We refer to such
channels as "classical scrambling" channels, denoted as

NAB→Y
CS := Σ

x1,x2,y
qY |X1,X2

(y|x1, x2) |y⟩⟨y|Y ⊗
(
ΛA
x1

⊗ ΓB
x2

)
(2)

where {Λx1}x1 and {Γx2}x2 are complete POVMs acting on
Hilbert spaces HA1 and HA2 respectively. The same model
of a QC-channel, termed as a POVM having a separable
decomposition with stochastic integration was proposed in
[21].

Definition 4 (CS-QC MAC with feedback simulation): An
(R1, R2, ε) simulation code for a 2-independent user CS-QC
MAC given in (2) with inputs as pure states obtained by
purification of Λ(ρA)⊗Γ(σB) and access to unlimited shared
randomness between Sender 1

S1↔ Receiver and Sender 2
S2↔

Receiver, consists of:
• A pair of Encoders of form E1⊗E2, such that: Ej : Xj ⊗

Sj → [1 : 2Rj ], for j ∈ {1, 2};
• Two separate noiseless rate-limited classical links of rate
Rj , j ∈ {1, 2} and;

• A decoder D : [1 : 2R1 ]×S1 × [1 : 2R2 ]×S2 → Y such
that∣∣∣∣∣∣∣∣D◦
(

2
⊗
j=1

Ej
)(

Λ(ρA)⊗ Γ(σB)⊗
2
⊗
j=1

pSj

)
−qY |X1X2

∣∣∣∣∣∣∣∣
1

≤ ε.

A. Achievability

Definition 5: The quantum smoothed max-mutual informa-
tion is defined as

Iεmax(A;B)ρ := inf
ρ′AB∈Bε(ρAB)

Dmax(ρ
′AB ||ρA ⊗ ρB), (3)

where Dmax and Bε are defined in Definition 2.



Theorem 6.1: For any given ε > 0, there exists an
(R1, R2, ε) one-shot CS-QC MAC simulation protocol satis-
fying

R1 ≥ I
ε
2
max(U1;RA)η + 7 log

(
2

ε

)
+ 1; (4)

R2 ≥ I
ε
2
max(U2;RB)η + 7 log

(
2

ε

)
+ 1, (5)

where ηY RARBU1U2X1X2 is classical quantum state defined as

η := Σ
u1,u2

pY |U1U2
(y|u1, u2) |y⟩⟨y|Y ⊗ |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2

⊗ pU1|X1
(u1|x1)pX1

(x1) |u1⟩⟨u1|U1 ⊗ pU2|X2
(u2|x2)pX2

(x2)

|u2⟩⟨u2|U2 ⊗
{
IRA ⊗ ΛA

x1

}
(ϕRAA

ρ )⊗
{
IRB ⊗ ΓB

x2

}
(ψRBB

σ ),
(6)

s.t. I(RA, RB ;Y |U1, U2)η = 0 and N (ϕρ ⊗ ψσ) = ηRARBY .
Proof: The proof for the inner bound follows by apply-

ing the so-called one-shot measurement compression theorem
with feedback [14, Theorem 1] twice, for each sender. The
achievability protocol is constructed using:

• Encoding: Both the senders locally obtain the
measurement outcome Xj , and then generate the
classical auxiliary random variables Uj by post
processing Xj with the dephasing map I ⊗ CXj

j → Uj .

The map CXj→Uj

j

(
Σ
x
pXj

(x) |x⟩⟨x|Xj

)
:=

Σ
u,x

pXj
(xj)pUj |Xj

(u|x) |u⟩⟨u|Uj , is a measurement

channel that measures the state on Xj in an o.n.b.
|u⟩Uj and outputs the conditional distribution pUj |Xj

.
Thus, we can the extended measurement operators and
an extension η of the channel output, respectively, as:

Λ̃A→U1 ⊗ Γ̃B→U2 := (C1 ◦ Λ)A→U1 ⊗ (C2 ◦ Γ)B→U2

⇒ η = Σ
y,u1,u2

pY |U1,U2
(u1, u2) |y⟩⟨y|Y ⊗

(Λ̃u1
⊗ Γ̃u2

)(ϕρ ⊗ ψσ). (7)

Hence, the Encoders Ej : AjSjUjUj → [1 : 2Rj ] (with
the inputs A1 := A and A2 := B) are the encoders used
in the measurement compression protocol with feedback
[14, Theorem 1].

• Decoders: Dj : [1 : 2Rj ]⊗Sj → Uj are the decoders used
in measurement compression [14, Theorem 1] to recover
U1, U2 by "preserving" correlations with RA, RB . Then
final decoder output is Y ∼ qY |U1,U2

and thus D :=
pY |U1,U2

◦ (D1 ⊗D2).
Analysis technique: The one-shot measurement compression
theorem with feedback [14, Theorem 1] approximately simu-
lates the measurement outcomes of {Λ̃ ⊗ Γ̃} at the receiver,
who then scrambles these simulated outcomes (U1, U2) ac-
cording to pY |U1,U2

(or stochastically generates Y ) to ap-
proximately simulate the QC-MAC given by equation 2. The
communication cost is given by equation 4, incurred from
measurement compression. Alternately, the above rates can
also be derived using the one-shot state splitting technique
illustrated in [6, Theorem 10].

B. Converse

Theorem 6.2: For a given ε > 0 and a classical scrambling
QC-MAC given by Equation 2 with inputs Λ(ρA),Γ(σB)
and their respective purifications |ϕρ⟩RAAX1 , |ψσ⟩RBBX2 , any
simulation code satisfies the following outer bound

R1 ≥ Iεmax(RA;U1)τ −O(log 1
ε ), (8)

R2 ≥ Iεmax(RB ;U2)τ −O(log 1
ε ), (9)

evaluated with respect to the state τRARBU1U2Y X1X2 :

τ := Σ
y,u1,u2,x1,x2

pY |U1,U2
(y|u1, u2)

2

Π
j=1

{
pXj (xj)pU1|X1

(uj |xj)
}
|y⟩⟨y|

⊗|x1x2⟩⟨x1x2|⊗|u1⟩⟨u1| ⊗pU2|X2
(u2|x2) |u2⟩⟨u2| ⊗ τRARBY

u1,u2

such that

∥τRARBY −
[
IRARB ⊗NAB→Y

] (
ϕRAA
ρ ⊗ ψRBB

σ

)
∥1 ≤ ε .

The proof of this theorem is deferred in the full version [17].

C. Asymptotic iid rate region

Corollary 1: Consider the classical scrambling QC-MAC
NAB→Y , given by Equation 2 and inputs ρA, σB with their
respective purifications |ϕρ⟩RAA

, |ψσ⟩RBB . The rate region
for simulating NAB→Y using infinite shared randomness be-
tween each sender-receiver pair and classical communication
over links of (R1, R2) is closure of the regions described by:

R1 ≥ I(U1;RA), R2 ≥ I(U2;RB) (10)

where the above mutual information are calculated with re-
spect to the state τRARBU1U2Y X1X2 :

τ := Σ
u1,u2x1,x2,y

pY |U1,Y2
pX1

(x1)pX2
(x2) |y⟩⟨y| ⊗ |x1x2⟩⟨x1x2|

⊗ pU1|X1
(u1|x1)pU2|X2

(u2|x2) |u1u2⟩⟨u1u2| ⊗ τRARBY
u1,u2

such that τRARBY = [IRARB ⊗NAB→Y ](ϕRAA
ρ ⊗ ψRBB

σ ).
The proof of this lemma can be found in the full version of

this work [17].

VII. CONCLUSION AND OPEN PROBLEMS

In this work, we have provided a first tight characterization
(via almost matching inner and outer bounds) for simulating
a 2-independent user classical MAC, with unlimited shared
randomness. Further, we have derived an analogous extension
to the classical scrambling QC-MAC and also provided its
asymptotic iid characterization. The quest to make our pro-
tocols independent of the inputs, also known as the universal
channel simulation and bound the cardinality of auixiliaries,
are a part of ongoing research. Working with classical-to-
quantum and fully quantum MAC with entanglement assis-
tance is a further interesting open problem.
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