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Abstract—We study the effect of shared non-signaling corre-
lations for the problem of simulating a channel using noiseless
communication in the one-shot setting. For classical channels,
we show how to round any non-signaling-assisted simulation
strategy — which exactly corresponds to the meta-converse for
channel simulation — to a strategy that only uses shared ran-
domness. For quantum channels, we round any non-signaling-
assisted simulation strategy to a strategy that only uses shared
entanglement. As our main result, we prove a guarantee on the
ratio of success probabilities of at least (1 − 1

e
), for both the

classical and the quantum setting. We further show this ratio
to be optimal. It can be improved to (1 − 1

t
) using O(ln ln(t))

additional bits (qubits) of communication.

I. INTRODUCTION

Channel simulation is the task of simulating a noisy channel
using a noiseless channel (e.g., [1]–[6]). As such, it is the
reverse task of channel coding [7]. As for channel coding,
in the i.i.d. setting, the channel’s capacity characterizes the
minimal communication rate needed to simulate this channel
when shared-randomness is allowed [2], [8], [9].

In the work [10] on classical channel coding, a simple and
efficient algorithm is designed to return a code achieving a
(1 − 1

e )-approximation of the maximum success probability
that can be attained for a noisy classical channel. This al-
gorithm is based on a relaxation of the problem where the
sender and the receiver share non-signaling correlations —
which exactly corresponds [11] to the well-known PPV meta-
converse [12], [13].1 The approximation ratio (1− 1

e ) is tight
and it is shown that it is NP-hard to achieve a strictly bet-
ter ratio [10]. Moreover, some approximation algorithms are
proposed for computing the maximum success probability of
classical-quantum (CQ) channels [14], (deterministic) broad-
cast channels [15] and multiple access channels [16]. Finally,
for quantum channel coding, finding optimal approximation
algorithms for the success probability remains completely
open.

In this work, we consider the task of simulating classical
channels with shared-randomness and quantum channels with
shared-entanglement in the one-shot setting. In the algorithmic
point of view [10]–[12], [14]–[16], we have a complete
description of the channel we want to simulate and we aim
to find an optimal encoding-decoding scheme in order to
maximize the success probability for a fixed communication

1These results are stated in terms of the code size M for a fixed error
probability ε. In this article, we are interested in maximizing the success
probability 1− ε for a fixed given code size M .

size. Since we are interested in designing efficient algorithms
to obtain near optimal codes for simulating classical channels,
we consider the meta-converse for channel simulation which
has been shown to lead to the correct high order refinements
[5] (e.g., optimal bounds for coding in the finite block-length
setting up to the second-order). Here, we show that the meta-
converse is equally useful in the one-shot setting:

• Following [5], [17]–[22], we consider the meta-converse
for channel simulation obtained by allowing non-
signaling correlations between the sender and the re-
ceiver. When allowing non-signaling correlations, the
optimal success probability for the simulation becomes
a linear program (LP).

• This efficient LP meta-converse provides an upper bound
on the success probability, as non-signaling correlations
include shared-randomness. Our main result is to show
that this bound gives an (1 − 1

e )-approximation of the
maximum success probability and that this approximation
ratio is tight. For this, we round the solution of the non-
signaling program to a shared-randomness strategy for
simulating a classical channel with the same communica-
tion size. After reducing the non-signaling program using
symmetry, we use the rejection sampling technique [23]
to simulate an optimal non-signaling channel using an
optimal probability distribution that appears in the non-
signaling program. Moreover, we exhibit channels for
which the approximation ratio is arbitrarily close to
(1− 1

e ).
• If an additional ln(t)-amount of communication is al-

lowed, then we obtain a better approximation ratio (1−
1
t ). In particular, this allows us to prove the fact that the
non-signaling simulation capacity of a classical channel
is exactly the same as with shared-randomness [9].

• We generalize the previous approximation results to the
quantum setting, where we compare shared-entanglement
with non-signaling strategies using quantum rejection
sampling [24].

Notations.
• For a positive integer N ∈ N, we denote by [N ] the set

of integers between 1 and N .
• The total variation (TV) distance between two probabil-

ity distributions p and q on [n] is

∥p− q∥TV =
1

2

n∑
i=1

|pi − qi|.



• The one norm of a matrix M is defined as ∥M∥1 =
Tr [|M |] where |M | =

√
MM†.

• The trace norm between two quantum states ρ and σ is
defined as ∥ρ− σ∥tr = 1

2∥ρ− σ∥1.
• The diamond distance between two quantum channels N

and M is defined as

∥N −M∥⋄ = sup
σ state

∥(id⊗N )(σ)− (id⊗M)(σ)∥tr.

• For a quantum channel N : A → B, we define the Choi
matrix JN =

∑|A|
i,j=1 |i⟩ ⟨j|A′ ⊗NA→B(|i⟩ ⟨j|A) = (id⊗

NA→B)(|w⟩⟨w|A′A) where |w⟩ =
∑|A|

i=1 |i⟩A′ |i⟩A.
• A ≽ B stands for A−B positive semi-definite.
• N ≽CP M stands for N −M completely positive.

II. SIMULATION OF CLASSICAL CHANNELS

Given a classical channel WY |X of input alphabet X and
output alphabet Y and an integer M , our goal is to simulate
the channel W using a classical communication of at most M
distinct messages and with an error probability as small as pos-
sible. More formally, we can describe a size M ε-simulation
code for the channel WY |X by a triple ({Es}s∈S , {Ds}s∈S ,S)
such that the synthesized channel

W̃Y |X(y|x) =
∑
s∈S

pS(s)

M∑
i=1

Es(i|x)Ds(y|i)

is ε close to the actual channel WY |X in the worst case
total variation distance. Here, it is allowed to use a shared
random variable S on an arbitrary discrete set S. This choice
is motivated by the fact that strategies, assisted by shared-
randomness (SR), are proven to achieve optimal channel
simulation capacity [5], whereas strategies without assistance
require a simulation rate strictly greater than the capacity [2],
[9]. Allowing shared-randomness of arbitrary size makes the
problem of computing the success probability computationally
even harder. In the following, we describe a possible approx-
imation algorithm given by the meta-converse.

SR strategies are special case of the so called non-signaling
strategies. In this latter, the joint encoder-decoder map NIY |XJ

satisfies

NIY |XJ(i, y|x, j) ≥ 0 ∀i, y, x, j,∑
i,y

NIY |XJ(i, y|x, j) = 1 ∀x, j,∑
i

NIY |XJ(i, y|x, j) = NY |J(y|j) ∀x,∑
y

NIY |XJ(i, y|x, j) = NI|X(i|x) ∀j.

We denote the set of non-signaling maps by NS(IY |XJ).
Non-signaling strategies prove to be useful for simplifying

the computation of the maximal success probability which is
obtained by solving the following program

SuccessNS(W,M) = max
N

1− sup
x∈X

∥∥∥W̃ (·|x)−W (·|x)
∥∥∥
TV

s.t. N ∈ NS(IY |XJ), (1)

W̃(y|x) =
M∑
i=1

N(i, y|x, i).

So, when we relax the constraints of the encoder-decoder to be
non-signaling, we obtain a linear program. After a symmetry-
based reduction, the program (1) becomes [5], [21], [25] (see
[26] for a proof)

SuccessNS(W,M) = max
W̃ , ζ

1− sup
x∈X

∥∥∥W̃ (·|x)−W (·|x)
∥∥∥
TV

s.t.
∑
y

W̃(y|x) = 1 ∀x,

W̃(y|x) ≥ 0 ∀x, y, (2)

W̃(y|x) ≤ ζ(y) ∀x, y,∑
y

ζ(y) = M.

Observe that a strategy assisted by shared-randomness
N(iy|xj) =

∑
s∈S pS(s)

∑M
i=1 Es(i|x)Ds(y|j) is non-

signaling, so the non-signaling (NS) simulation success prob-
ability is greater than the shared-randomness (SR) simulation
success probability

SuccessNS(W,M) ≥ SuccessSR(W,M).

These values might be different in general. For the chan-
nel [17]

W :

(
M2

M

)
→ {1, 2, . . . ,M2}, W (y|x) = 1

M
1{y ∈ x}

we show that (see [26] for a proof)

SuccessSR(W,M)

SuccessNS(W,M)
−→

M→∞
1− 1

e
.

Since non-signaling strategies are computationally accessi-
ble and shared-randomness strategies are of interest, a natural
question arises:

How large is the gap between the success probabilities of
these strategies?

In the following, we round the solution of the non-
signaling program (2) to a strategy that requires only shared-
randomness. This allows us to prove a meta inequality between
the channel using non-signaling resources and the constructed
channel using only shared randomness.

Proposition 1. Let M ′ ∈ N. Let W̃NS be a feasible solution
of the program (2). There exists W̃ SR, a strategy of size M ′

assisted by shared-randomness, that satisfies

W̃ SR(y|x) ≥

[
1−

(
1− 1

M

)M ′]
W̃NS(y|x) ∀x, y.



To construct the strategy W̃ SR with shared-randomness, we
use a standard tool from statistics [27] that has been applied
previously to channel simulation [5], [22], [28] namely the
rejection sampling technique [23].

Proof of Prop. 1. Let (W̃NS, ζ) be a feasible solution of the
program (2).

a) Shared randomness: Since
∑

y ζ(y) = M and for
all y, ζ(y) ≥ 0, { ζ(y)

M }y is a probability distribution. Let
Y1, . . . ,YM′ be i.i.d. samples from pinitial = { ζ(y)

M }y . This
is the shared-randomness.

b) Encoding: For an input x, we run the rejection
sampling algorithm [5] with M ′ steps for pinitial = { ζ(y)

M }y
and ptarget = W̃NS(·|x) and obtain Ỹ = Yi where i is the
first index (or M ′ if it does not exist) such that

Ui ≤
1

M
· ptarget(Yi)

pinitial(Yi)
=

W̃NS(Yi|x)
ζ(Yi)

,

where Ui ∼ Unif([0, 1]), then encode Es(m|x) = δm=i.
c) Decoding: Decode as Ds(y|m) = δy=Ym . For finite

M ′, we follow [5] and show, with a simple calculation, that
the distribution of Ỹ satisfies for y ∈ Y that

pỸ(y) =

(
1− 1

M

)M ′−1 (
pinitial(y)−

1

M
· ptarget(y)

)
+

[
1−

(
1− 1

M

)M ′]
ptarget(y).

Indeed, let us denote E the binary random variable such that
E = 1 if and only if there is an i ≤ M ′ such that Ui ≤
1
M · ptarget(Yi)

pinitial(Yi)
. We have by letting λ = 1

M that

pỸE(y, 0)

=
∑

y1,...,yM′−1

M ′−1∏
i=1

pinitial(yi)

(
1− λ · ptarget(yi)

pinitial(yi)

)

· pinitial(y)
(
1− λ · ptarget(y)

pinitial(y)

)
=

M ′−1∏
i=1

∑
yi

(pinitial(yi)− λ · ptarget(yi))

· (pinitial(y)− λ · ptarget(y))
= (1− λ)M

′−1 (pinitial(y)− λ · ptarget(y)) .
Similarly, we get

pỸE(y, 1)

=

M ′∑
j=1

∑
y1,...,yj−1

j−1∏
i=1

pinitial(yi)

(
1− λ · ptarget(yi)

pinitial(yi)

)
· pinitial(y)

(
λ · ptarget(y)

pinitial(y)

)
=

M ′∑
j=1

(1− λ)j−1 · λ · ptarget(y)

=
(
1− (1− λ)M

′
)
ptarget(y).

Hence, we find

pỸ(y) = pỸE(y, 0) + pỸE(y, 1)

=

(
1− 1

M

)M ′−1 (
pinitial(y)−

1

M
· ptarget(y)

)
+

[
1−

(
1− 1

M

)M ′]
ptarget(y).

Moreover, the second constraint of the program (2) reads

∀y : pinitial(y) =
ζ(y)

M
≥ 1

M
W̃NS(y|x) = 1

M
· ptarget(y).

Therefore, we get

pỸ(y) =

(
1− 1

M

)M ′−1 (
pinitial(y)−

1

M
· ptarget(y)

)
+

[
1−

(
1− 1

M

)M ′]
ptarget(y)

≥

[
1−

(
1− 1

M

)M ′]
ptarget(y).

By observing that pỸ(y) = W̃ SR(y|x), where W̃ SR(y|x) =∑
s∈S pS(s)

∑M ′

m=1 Es(m|x)Ds(y|m), we deduce the required
inequality.

As a direct corollary of Prop. 1, we can control the gap
between the success probabilities of strategies assisted by
shared-randomness and non-signaling boxes. Although we fo-
cus on the worst-case total variation distance, it is noteworthy
that Prop. 1 also permits to control the gap between the
success probabilities of SR and NS strategies under average-
case total variation, as well as under average and worst-case
Bhattacharyya distance.

Corollary 1.1. Let M,M ′ ≥ 1 and W be a channel. We have

1 ≥ SuccessSR(W,M ′)

SuccessNS(W,M)
≥

[
1−

(
1− 1

M

)M ′]
.

In particular, when M ′ = M , the gap between
SuccessSR(W,M) and SuccessNS(W,M) is at most 1 − 1

e .
Furthermore, by choosing M ′ = ln(t)M , we can show that
the gap is at most 1 − 1

t and thus approaches 1 as t → ∞.
This implies the fact that the non-signaling assistance does not
help to reduce the asymptotic simulation capacity of a classical
channel [5], [9] (see [26] for a proof)

CSR(W) = CEA(W) = CNS(W).

Finally, as shown in [26], the bounds of Cor. 1.1 are tight.
These simulation results are analogous to the known rounding
results for channel coding [10]. However, the techniques
needed are different. In fact, the simulation meta-converse is
related to the smoothed max-divergence [21], while the coding
PPV meta-converse can be phrased in terms of the hypothesis
testing divergence [11].



Proof of Cor. 1.1. Observe that for two probability distribu-
tions p and q, 1 − ∥p − q∥TV =

∑
i min(pi, qi). Let x ∈ X ,

by Prop. 1 we have

1−
∥∥∥W̃ SR(·|x)−W(·|x)

∥∥∥
TV

=
∑
y

min
(
W̃ SR(y|x), W(y|x)

)
≥

∑
y

[
1−

(
1− 1

M

)M ′]
min

(
W̃NS(y|x), W(y|x)

)
=

[
1−

(
1− 1

M

)M ′](
1−

∥∥∥W̃NS(·|x)−W(·|x)
∥∥∥
TV

)
,

where we used
(
1− (1− 1/M)M

′
)
≤ 1. Choosing the opti-

mal feasible solution W̃NS of the program (2) and taking the
minimum on x on both sides give the desired inequality.

III. SIMULATION OF QUANTUM CHANNELS

We are able to provide approximation algorithms in the
quantum setting as well. Note that, in contrast, the correspond-
ing question for quantum channel coding remains open. In this
section, we generalize the rounding results of Section II to the
simulation of quantum channels with quantum communication
and with entanglement-assisted strategies (EA). EA strategies
are more natural in the quantum setting and are strictly
more powerful for quantum channels than shared-randomness
strategies [9].

Formally, a size-M entanglement-assisted ε-simulation code
for WA→B is a triple (EAiEA→Ao ,DEBBi→Bo , σEAEB

) such
that |Ao| = |Bi| = M , Ai = A, Bo = B and the synthesized
channel

W̃A→B(ρ) = DEBBi→B idqAo→Bi
EAEA→Ao(ρA ⊗ σEAEB

)

is ε close to the channel WA→B in the diamond distance,
where idq = idqAo→Bi

denotes the quantum identity channel
of dimension M . For a fixed size M , maximizing the success
probability 1− ε of EA strategies is computationally hard. In
order to approximate the success probability, we use the meta-
converse obtained by considering non-signaling strategies Π
whose Choi matrices satisfy [21]

JΠ ≽ 0, TrAoBo [JΠ] = IAiBi (CP), (TP),

TrAo
[JΠ] =

IAi

|Ai|
⊗ TrAoAi [JΠ] (A ↛ B),

TrBo
[JΠ] =

IBi

|Bi|
⊗ TrBiBo

[JΠ] (B ↛ A).

Using [21, Cor. 2] or [25], the non-signaling program can be
written as the following semi-definite program (SDP)

SuccessNS(W,M) = max
W̃A→B ,VB

1−
∥∥∥WA→B − W̃A→B

∥∥∥
⋄

s.t. W̃A→B quantum channel,
(3)

JW̃ ≼ IA′ ⊗ VB ,

Tr [VB ] = M2.

Notably, when only classical instead of quantum communica-
tion is allowed, with the classical identity channel

idc(ρ) = idcAo→Bi
(ρ) =

N∑
x=1

⟨x| ρ |x⟩ |x⟩⟨x|,

the non-signaling program is similar to (3) except that M2 is
replaced by N (see [26] for a proof). Since EA strategies are
non-signaling, the success probability of NS strategies is at
least as its EA counterparts

SuccessNS(W,M) ≥ SuccessEA(W,M).

Now, we can inquire about the extent to which these quantities
can differ. Importantly, the answer to this question is similar
to Cor. 1.1 although the context and the proof strategies are
slightly different. We round a feasible solution of the program
(3) to an EA strategy. Then we compare the distance between
the resulting channel of this strategy to the feasible non-
signaling channel. We prove a meta-inequality between the
EA and the NS channels that can be of independent interest.

Proposition 2. Let M,M ′ ∈ N. Let W̃NS be a feasible
solution of the program (3). There exists W̃EA, an EA strategy
of size M ′, that satisfies

W̃EA ≽CP

[
1−

(
1− 1

M2

)M ′2]
W̃NS.

The proof is based on a quantum analog of rejection
sampling technique similar to the convex split technique (e.g.,
[24], [28]–[30]).

Proof of Prop. 2. Let (W̃NS
A→B , VB) be a feasible solution of

the program (3). A bipartite state |ϕ⟩⟨ϕ|A′A can be written as

|ϕ⟩A′A = (Oϕ ⊗ IA) |w⟩A′A , where |w⟩A′A =

|A|∑
i=1

|i⟩A′ |i⟩A .

The state |ϕ⟩⟨ϕ|A′A is pure so ⟨ϕ|ϕ⟩ = 1 implying

Tr
[
OϕO

†
ϕ

]
= ⟨w| (O†

ϕOϕ ⊗ IA) |w⟩ = ⟨ϕ|ϕ⟩ = 1.

The constraints of the program (3) imply

0 ≼ id⊗ W̃NS
A→B(|ϕ⟩⟨ϕ|A′A)

= id⊗ W̃NS
A→B((Oϕ ⊗ I) · |w⟩⟨w| · (O†

ϕ ⊗ I))

= (Oϕ ⊗ I) · JW̃NS · (O†
ϕ ⊗ I)

≼ (Oϕ ⊗ I) · (IA′ ⊗ VB) · (O†
ϕ ⊗ I)

= (OϕO
†
ϕ ⊗ VB).

Since Tr [VB ] = M2 and Tr
[
OϕO

†
ϕ

]
= 1, the matrix OϕO

†
ϕ⊗

VB

M2 is a quantum state satisfying for all unit vectors |ϕ⟩ that

OϕO
†
ϕ ⊗ VB

M2
≽

(
1

M2

)
· id⊗ W̃NS

A→B(|ϕ⟩⟨ϕ|A′A).

Consider the following scheme inspired by [28].



a) Shared entanglement: Let |V ⟩EAEB
be a purification

of VB

M2 (|EA| = |EB | = |B|). |V ⟩⊗M ′2

EAEB
is a part of the shared-

entanglement between Alice and Bob.
b) Encoding: For an input state |ϕ⟩⟨ϕ|, we have

OϕO
†
ϕ ⊗ VB

M2
≽

(
1

M2

)
· id⊗ W̃NS

A→B(|ϕ⟩⟨ϕ|A′A)

so we can write for some state ζA′B that

OϕO
†
ϕ ⊗ VB

M2
= (1− λ)σA′B + λζA′B ,

where λ = 1− 1
M2 and σ = id⊗W̃NS

A→B(|ϕ⟩⟨ϕ|A′A). Consider
a purification of OϕO

†
ϕ ⊗ VB

M2 as

|OV ⟩ =
√
1− λ |0⟩S |σ⟩EAFAEBFB

+
√
λ |1⟩S |ζ⟩EAFAEBFB

,

where |FA| = |FB | = |A′| = |A|. Since

TrSEAFAA′ [|OV ⟩⟨OV |] = (1− λ)σB + λζB

=
VB

M2
= TrEA

[|V ⟩⟨V |EAEB
] ,

by Uhlmann’s theorem [31], there is an isometry I such that,

IEA→SEAFAA′ ·
(
|V ⟩⊗M ′2

EAEB

)
= |OV ⟩⊗M ′2

SEAFAEBFB
.

Alice can then apply the isometry IEA→SEAFAA′ on her part
of the shared entangled state |V ⟩⊗M ′2

EAEB
. The resulting state is,

|OV ⟩⊗M ′2

=
∑

x∈{0,1}M′2

√
1− λ

|x̄|√
λ
|x|

|x⟩SM′2 ⊗ |σ⟩⊗|x̄| ⊗ |ζ⟩⊗|x|
,

where |x| = M ′2 − |x̄| =
∑

i xi. Finally, Alice measures the
system S and observes x = x ∈ {0, 1}M ′2

with probability
(1− λ)|x̄|(λ)|x|. The probability that x contains ‘0’ is

P [0 ∈ x] = 1− P [x = 1 · · · 1] = 1− λM ′2
.

Let I be the index of the first ‘0’ in x if x ̸= 1 · · · 1 and M ′2

otherwise. Alice sends I ∈ [M ′2] to Bob using super dense
coding [32] and the quantum identity channel of dimension
M ′.

c) Decoding: Bob returns the I’s (post-measurement)
copy of EBFB . This state is denoted id⊗ W̃EA

I (|ϕ⟩⟨ϕ|) with

id⊗ W̃EA(|ϕ⟩⟨ϕ|)

= EI

[
id⊗ W̃EA

I (|ϕ⟩⟨ϕ|)
]

=
∑

x ̸=1···1

P [x = x]σEBFB
+ P [x = 1 · · · 1] ζEBFB

=
(
1− λM ′2

)
id⊗ W̃NS

A→B(|ϕ⟩⟨ϕ|A′A) + λM ′2
ζA′B

≽

[
1−

(
1− 1

M2

)M ′2]
id⊗ W̃NS

A→B(|ϕ⟩⟨ϕ|A′A).

In [26], it is shown that the state
(
1− λM ′2

)
σEBFB

+

λM ′2
ζEBFB

can be written as id⊗W̃EA(|ϕ⟩⟨ϕ|) for a quantum
channel W̃EA.

As a consequence of Prop. 2, we can control the gap be-
tween the EA and NS success probabilities under the diamond
distance. We note that a similar statement is implied by Prop. 2
for fidelity-based distances as well.

Corollary 2.1. Let M,M ′ ≥ 1 and W be a quantum channel.
We have

1 ≥ SuccessEA(W,M ′)

SuccessNS(W,M)
≥

[
1−

(
1− 1

M2

)M ′2]
.

Similar to the classical case, when M ′ = M , the gap
between SuccessEA(W,M) and SuccessNS(W,M) is at most
1 − 1

e . Furthermore, by choosing M ′ = ln(t)M , we can
show that the gap is at most 1 − 1

t and approaches 1 as
t → ∞. This proves the fact that the non-signaling correlations
do not help to reduce the asymptotic entanglement-assisted
simulation capacity of a quantum channel [17], [21] (see [26]
for a proof) QEA(W) = QNS(W).

Proof of Cor. 2.1. Let α = 1 −
(
1− 1

M2

)M ′2

and ϕ =
|ϕ⟩⟨ϕ|A′A be a pure state. Prop. 2 implies the existence of
the state ζ such that

W̃EA
A→B(ϕA′A) = αW̃NS

A→B(ϕA′A) + (1− α)ζ.

So, we have by the triangle inequality that

1−
∥∥∥W̃EA

A→B(ϕA′A)−WA→B(ϕA′A)
∥∥∥
tr

= 1−
∥∥∥αW̃NS

A→B(ϕA′A) + (1− α)ζ −WA→B(ϕA′A)
∥∥∥
tr

≥ 1− α
∥∥∥W̃NS

A→B(ϕA′A)−WA→B(ϕA′A)
∥∥∥
tr

− (1− α) ∥ζ −WA→B(ϕA′A)∥tr
≥ 1− α

∥∥∥W̃NS
A→B(ϕA′A)−WA→B(ϕA′A)

∥∥∥
tr
− (1− α)

= α
(
1−

∥∥∥W̃NS
A→B(ϕA′A)−WA→B(ϕA′A)

∥∥∥
tr

)
.

Choosing the optimal feasible solution W̃NS of the pro-
gram (3) and taking the infimum over ϕA′A yield the Corol-
lary.

IV. CONCLUSION

In this paper, we studied approximation algorithms of sim-
ulating classical and quantum channels. We proved rounding
results relating the success probabilities of SR/EA and NS
strategies. In particular, we showed that NS assistance is
not proving any further advantage for simulation capacities.
Yet, NS programs are more tractable for approximating the
success probability. It would be interesting to generalize these
results to the simulation of classical-quantum (CQ), quantum-
classical (QC) and/or network channels, as well as investigat-
ing computational hardness results of achieving an improved
approximation ratio of (1− 1

e + ε) for some ε > 0.
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