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The tangled state of quantum hypothesis  
testing
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Quantum hypothesis testing—the task of 
distinguishing quantum states—enjoys 
surprisingly deep connections with the 
theory of entanglement. Recent findings have 
reopened the biggest questions in hypothesis 
testing and reversible entanglement 
manipulation.

Most physicists are introduced to entropy through thermodynam-
ics. Entropy is the fundamental and unique quantity that governs the 
transformations under adiabatic processes: a transformation between 
two compatible states of a closed system can be realized if and only if 
the entropy does not decrease1. However, it also has a crucial role in 
the more abstract field of information theory. In particular, a gener-
alization known as the relative entropy provides a way to measure the 
distinguishability between probability distributions.

Extending the concept to quantum states was challenging because 
the non-commutative character of quantum states means that there 
are many possible ways to define such an extension. A unique and 
unambiguous solution came from the study of quantum hypothesis 
testing—a task in which we are given multiple copies of one of two 
quantum states, ρ or σ, and the goal is to distinguish between the two 
states. The probability of mistaking ρ for σ decays exponentially with 
the number of copies, and the corresponding exponent is given exactly 
by a quantum variant of the relative entropy

D (ρ‖σ) = Tr ρ (log2ρ − log2σ) . (1)

Its role in quantum hypothesis testing gives quantum relative 
entropy an operational meaning and a solid physical justification, 
identifying it as the correct extension of the classical relative entropy 
to the quantum case.

The uniqueness of the entropic measure of distinguishability 
of quantum states is consistent with the special role that thermody-
namic entropy plays in determining the transformations of physical 
systems. However, it is not the only link between quantum information 
theory and thermodynamics. At their core, both theories deal with 
resources that can be extracted from physical systems: in the case of 
thermodynamics, this sought-after resource is work, while in quantum 
information it is entanglement, which fuels quantum communication 
and computation tasks. Drawing an analogy with thermodynamics, the 
notion of an entropy of entanglement rose to prominence as a quantity 
that might completely characterize all entanglement transformations2. 
It was, however, unclear whether an exact correspondence between 
entanglement and thermodynamics could be established. Once again, 

the key to conclusively resolving this question was quantum hypothesis 
testing—or so it seemed.

Entropy of entanglement
Initial evidence for the existence of a unique entropy of entanglement 
was very promising. Many parallels between entanglement theory and 
thermodynamics were discovered, most strikingly the reversibility of 
the manipulation of pure, noiseless quantum states.

Consider a situation where two separate parties, Alice and Bob, 
share many copies of a bipartite quantum state with density matrix ρAB. 
The state may be entangled, which could be quantified by establishing 
how many maximally entangled two-qubit states can be extracted—or 
distilled—from the shared state. Alternatively, one could consider how 
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Fig. 1 | (Ir)reversibility in asymptotic state conversion. From each copy of a 
bipartite state ρAB, one can approximately extract Ed(ρAB) copies of a maximally 
entangled two-qubit state Φ+. Conversely, from each copy of the maximally 
entangled state Φ+, one can approximately prepare 1/Ec(ρAB) copies of the 
state ρAB, with the approximation becoming perfect when there is access to an 
asymptotically large number of copies. The problem of reversibility is then the 
question of whether Ed(ρAB) = Ec(ρAB), so that the rate at which entanglement 
can be extracted from ρAB equals the rate at which entanglement is needed to 
generate ρAB, making the overall process asymptotically cyclic and identifying 
the rate as the unique asymptotic measure of entanglement. It is known that 
equality holds whenever ρAB is a pure state, but this is not necessarily the case in 
general. If Ed(ρAB) <Ec(ρAB) for some state ρAB, then the state cannot be reversibly 
manipulated.
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This raised the question of what additional resources might be 
needed so that Ed(ρAB) = Ec(ρAB) holds for all mixed quantum states ρAB, 
making the theory fully reversible6. Some of us, Brandão and Plenio, 
tackled this problem with an axiomatic approach7,8. Rather than speci-
fying what Alice and Bob are allowed to do, the aim was to define the 
problem in terms of what they cannot do.

One natural restriction is simply to impose that they may not 
generate entanglement for free, as this would trivialize the whole 
framework. Relaxing this assumption slightly yields the set of ‘asymp-
totically non-entangling operations’. These may create some small 
amounts of entanglement, but this supplemented amount must 
become vanishingly small as more and more copies of states are manip-
ulated. Under such permitted operations, the entanglement cost Ec(ρAB) 
of any mixed state equals the so-called regularized relative entropy of 
entanglement E∞R  (ref. 8):

Ec(ρAB) = E∞R (ρAB) = lim
n→∞

1
n ( min

σAnBn∈SEP
D(ρ⊗nAB ‖σAnBn )) (3)

where the quantum relative entropy is minimized over the set of all 
separable (unentangled) states SEP, and the limit n→∞ represents the 
asymptotic character of the entanglement transformations. E∞R  thus 
gives a quantitative measure of how far ρAB is from being an unentangled 
state. The discovery that it equals the entanglement cost under asymp-
totically non-entangling operations directly generalized part of the 
earlier pure-state result in Eq. (2) and identified a promising candidate 
for a reversible framework of entanglement for all quantum states.

To complete the extension of Eq. (2), Brandão and Plenio needed 
to show that the distillable entanglement Ed also equals the regularized 
relative entropy. In an attempt to do so, they revealed a connection 
between the distillation of entanglement and a special kind of quantum 
hypothesis testing.

The role of quantum hypothesis testing
When identifying whether a given quantum state is one of two possibili-
ties, ρ or σ, there are two types of error that can be made. One can either 
mistake ρ for σ (conventionally called a type I error), or σ for ρ (type II 
error). These two mistakes are often not equally consequential, just 
as false-positive and false-negative results are not necessarily equally 
undesirable in clinical testing.

To understand the relation between the two errors, one defines 
the optimized type II error βε(ρ ∥ σ) as the least probability of type II 
error such that the probability of type I error is at most ε. We can then 
consider how this error probability scales as we use more and more 
copies of the unknown state. A result known as the quantum Stein’s 
lemma9 tells us that in the asymptotic limit the relative entropy deter-
mines this scaling precisely, thus capturing how difficult it is to distin-
guish any two states:

βε (ρ⊗n‖σ⊗n) ∼ 2−nD(ρ‖σ) (n→∞). (4)

The coefficient associated with the exponential decay in n of the 
left-hand side is therefore exactly given by the relative entropy.

But we may wish to consider a different task, where we are not just 
distinguishing between ρ and a single state σ, but between ρ and a whole 
family of states. For example, if we wish to test whether a certain quan-
tum device produces entanglement, we may want to test ρAB against all 
separable states (see Fig. 2). Intuitively, this can be used to gauge how 
entangled a given state is, since the distinguishability error quantifies 

much entanglement it costs to synthesize ρAB. These two questions led 
to the notions of distillable entanglement Ed(ρAB) and entanglement 
cost Ec(ρAB), respectively. Remarkably, for any pure state 
ψAB = |ψAB⟩⟨ψAB| , it holds that3

Ed(ψAB) = Ec(ψAB) = S(ψA) (2)

where S(ρ) = −Trρlog2 ρ is the von Neumann entropy, and ψA  is the 
reduced state on one of the two parties.

This equality means that any pure state costs exactly as much 
entanglement as can be distilled from it. If we consider the asymptotic 
limit, in which we can manipulate more and more copies of the given 
quantum state, nothing is lost in the process (see Fig. 1). This resembles 
reversible cycles in thermodynamics, and indeed it allows us to con-
clude that a strong ‘second law of entanglement’ holds: the entropy 
S(ψA) can be identified as the unique measure of pure-state entangle-
ment in the context of entanglement transformations.

However, it has been shown that for some noisy, mixed quantum 
states these transformations are irreversible4, calling into question 
the precise relation between thermodynamics and entanglement. A 
ray of hope appeared shortly thereafter thanks to relaxing some of 
the restrictions to which entanglement manipulation was subjected5.

Entanglement manipulation is typically studied in the framework 
of local operations and classical communication3, in the sense that 
Alice and Bob are free to perform any local operations and exchange 
information classically, but quantum communication may not be used 
freely, because doing so would allow them to distribute additional 
entanglement. This framework can be extended to give the two parties 
access to some additional, restricted resources. For instance, allowing 
so-called positive partial transpose operations makes it possible to 
reversibly transform some mixed states that are irreversible under the 
framework of local operations and classical communication5.
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Fig. 2 | Two types of quantum hypothesis testing. In the setting of hypothesis 
testing, we are given an unknown quantum state which is promised to be either 
a fixed state ρ or another fixed state σ (panel a), or either a fixed state ρ or a state 
belonging to some set of quantum states, for example all unentangled, separable 
states SEP (panel b). The task is then to guess correctly which of the two we have 
been given by measuring multiple copies of the system and deciding based on 
the measurement outcomes. The variant shown in panel b is known as composite 
hypothesis testing, and we refer to the particular case discussed here—where the 
alternative hypothesis comprises all unentangled states in SEP—as entanglement 
testing.
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how easy it is to mistake some unentangled state for ρAB. We refer to 
this composite hypothesis testing as entanglement testing. It is a very 
difficult problem to characterize, especially in the many-copy setting, 
as we need to understand the worst-case distinguishability error 
βε(ρ⊗nAB ∥ σAnBn ) optimized over all possible separable states σAnBn.

Brandão and Plenio’s work7,8 showed that the error exponent of 
entanglement testing is determined by the rate of distillation under 
asymptotically non-entangling operations

sup
σAnBn∈SEP

βε (ρ⊗nAB ‖σAnBn ) ∼ 2−nEd(ρAB) (n→∞; ε → 0+) (5)

where the equivalence holds exactly in the limit as the number of cop-
ies n grows to infinity and the type I error probability ε > 0 becomes 
vanishingly small (with the latter limit taken after the former one).

This result connected two very different tasks, entanglement 
distillation on the one hand and entanglement testing on the other. 
Taking cues from the original Stein’s lemma in Eq. (4), it is natural to 
expect this quantity to be equivalent to some type of relative entropy. 
Indeed, ref. 7,8 claimed to prove a generalization of the quantum Stein’s 
lemma, showing that the error exponent equals the regularized relative 
entropy of entanglement,

Ed(ρAB) = E∞R (ρAB). (6)

This would have established an exact expression quantifying the 
ultimate effectiveness of entanglement testing. Importantly, combin-
ing Eq. (6) with Eq. (3) would also complete the search for a reversible 
framework for entanglement theory by establishing that 
Ed(ρAB) = E∞R (ρAB) = Ec(ρAB)  under asymptotically non-entangling 
operations. This result would thus single out E∞R  as the sole measure 
that is compatible with asymptotically non-entangling transforma-
tions, identifying it as the unique generalization of the entropy of 
entanglement to mixed states in this framework. However, the situation 
turned out to be much more complicated.

Reversibility, or the lack thereof
Over 12 years after the publication of the generalized quantum Stein’s 
lemma7, which underlies Eq. (6), a gap was discovered in its original 
proof10. This brings the whole claim, and hence one of the most impor-
tant developments in quantum hypothesis testing since the original 
quantum Stein’s lemma9, into question.

What is an even more far-reaching consequence, this means that 
the first—and so far only—reversible framework for entanglement 
manipulation cannot be considered valid, reopening the question of 
whether it is possible to construct one at all.

We stress that the gap does not immediately disprove the revers-
ibility conjectured in ref. 7,8, since no counterexample has been found 
either. It also does not contradict the conceptual parallels between 
entanglement testing and entanglement distillation that we discussed 
above, as those results are independent of the generalized quantum 
Stein’s lemma. Although the error is seemingly just a technical over-
sight, it is unclear whether any of the known approaches10 can be used 
to re-establish the result.

To add to the confusion, although previous evidence generally 
seemed to support the hypothesis that reversibility of entanglement 
can be expected in some form, more recent results may suggest oth-
erwise. Some of us showed11 that the theory of entanglement remains 
irreversible under all protocols which do not generate entanglement. 

This result effectively established Brandão and Plenio’s class of asymp-
totically non-entangling operations as the smallest one that could 
become reversible, ruling out less permissive ways to restore revers-
ibility. What is more, according to some measures of entanglement, 
the amount of entanglement created in Brandão and Plenio’s approach 
was found not to be vanishingly small but rather asymptotically large11, 
casting doubt on whether such a framework can be considered truly 
‘asymptotically non-entangling’.

On the more positive side, there are also reasons to believe that 
the original claims of ref. 7,8 are indeed true. Perhaps one of the most 
compelling for us is the fact that a slightly tweaked version of Eq. (5), 
in which we replace the limit ε → 0 with ε → 1, can be proved to con-
verge to the limit E∞R (ρAB) (ref. 10). Such a modification corresponds 
to asking about the optimal type II error exponent when we do not 
require the type I error probability to be small, but rather we content 
ourselves with it not being too large, that is, too close to 1. In informa-
tion theory, this is known as the ‘strong converse’ regime. Crucially, 
the transition to the strong converse regime is known not to change 
the asymptotic rates of important quantum information processing 
tasks, including standard quantum hypothesis testing between two 
states. If this were true also for entanglement testing, it would recover 
E∞R (ρAB) as the optimal error exponent of entanglement testing and 
restore the reversibility of entanglement. However, this property 
remains to be proved.

The gap in the proof of ref. 7,8 also affects other follow-up results. 
The generality of Brandão and Plenio’s approach allowed it to be 
applied beyond entanglement theory, suggesting that essentially all 
phenomena that find use in quantum information can be manipulated 
reversibly12. Such a strong property may be lost unless a proof of the 
generalized quantum Stein’s lemma can be recovered. Additionally, 
several important proofs in quantum information theory become 
incomplete without the generalized quantum Stein’s lemma10.

Some other quantum resources, such as quantum coherence, 
can be shown to be reversible using different methods. Although this 
may suggest that reversibility is a generic property shared by differ-
ent theories of quantum resource manipulation, we already know 
that the reversibility of entanglement—if it is at all possible—cannot 
be obtained under the same setting and assumptions11. This makes 
it difficult to draw any strong conclusions from the other reversible 
quantum resource theories. Similarly, several extensions of quantum 
Stein’s lemma can be established in certain settings, but none of them 
are quite strong enough to recover the original statement of Eq. (6) 
(ref. 10).

Altogether, Brandão and Plenio’s axiomatic framework certainly 
did unveil deep connections between quantum hypothesis testing 
and asymptotic transformations of quantum resources. However, 
the most important application of these connections—the establish-
ment of a reversible theory of quantum entanglement, together with 
a unique entropic measure of entanglement—can only be considered 
a conjecture at this point.

Although the discovery of the gap in the proof of ref. 7,8 has shaken 
up the foundations of modern quantum information, it has also rein-
vigorated interest in some of the cornerstone problems of the theories 
of entanglement and quantum state discrimination, and we can only 
hope that this will lead to exciting new research in the future. What we 
certainly know now is that quantum entanglement hides an even richer 
and more complicated structure than we had given it credit for, and 
understanding some of its most fundamental properties may be even 
more difficult than it seemed.
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