
Broadcast Channel Simulation
Michael X. Cao∗†, Navneeth Ramakrishnan†‡, Mario Berta‡§, Marco Tomamichel∗†

∗Department of Electrical and Computer Engineering, National University of Singapore, Singapore
†Centre for Quantum Technologies, National University of Singapore, Singapore

‡Department of Computing, Imperial College London, London, UK
§Institute for Quantum Information, RWTH Aachen University, Aachen, Germany

Abstract—We study the problem of random-assisted simulation
of discrete broadcast channel in one-shot and i.i.d. setups. We
derive one-shot inner and outer bounds of the set of attainable
message-size pairs for simulating WYZ|X within some total varia-
tion distance (TVD) tolerance of ϵ. The inner bounds are based
on the bipartite convex split lemma. Whereas the outer bounds
are based on the properties of the multi-partite max information.
Using these bounds, we establish a single-letter expression of the
simulation region of a broadcast channel.

I. INTRODUCTION

Channel simulation is a fundamental task in information
theory, and is the reverse of the task of channel coding (e.g.,
see [1], [2], [3]). It has been studied intensively in asymptotic
setups in the context of the reverse Shannon theorem [4],
[5], as well as in one-shot setups [6], [7]. In this paper, we
consider the problem of simulating broadcast channels with
unconstrained shared randomness between the sender and each
of the receivers.

Given a two-receiver broadcast channel WYZ|X ∈ P(Y ×
Z|X ) and a pair of shared random variables S and S′ on
set S and S ′, respectively, the task of simulating WYZ|X
within a tolerance of ϵ in the total variation distance (TVD)
is to find a pair of sets of encoders EY

s ∈ P(1, . . . ,M |X ),
EZ
s′ ∈ P(1, . . . , N |X ) and a pair of sets of decoders DY

s ∈
P(Y|1, . . . ,M), DZ

s′ ∈ P(Z|1, . . . , N) for each s ∈ S and
s′ ∈ S ′ such that, for all input distributions pX ∈ P(X ), the
induced joint distribution

p̃XYZ(x, y, z) :=
∑

s∈S,s′∈S′

pS(s) · pS′(s′) · pX(x)·∑
m∈{1,...,M}
n∈{1,...,N}

EY
s (m|x) · EZ

s′ (n|x) · DY
s (y|m) · DZ

s′(z|n)
(1)

is ϵ-close to the original joint distribution pXYZ(x, y, z) :=
pX(x) · WYZ|X(y, z|x) in TVD. We call the 5-tuple
({EY

s }s∈S , {EZ
s′}s′∈S′ , {SY

s }s∈S , {SZ
s′}s′∈S′ ,S) a size-

(M,N) ϵ-simulation code for WYZ|X (see Fig. 1).
A message-size pair (M,N) is said to be ϵ-attainable if

there exists a size-(M,N) ϵ-simulation code, and we denote
M⋆

ϵ (WYZ|X) the set of all ϵ-attainable message-size pairs.
In Section II, we propose a pair of subset and superset for
M⋆

ϵ (WYZ|X). The inner (achievability) bound is based on the
bipartite convex split lemma [8], and the outer (converse)
bound is based on various properties of multipartite max-
information.
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Fig. 1. The task of simulating a bipartite broadcast channel with the help of
common randomness between the sender and the two receivers, respectively,
under the worst case error criteria given by the channel TVD.

We are also interested in the problem of simulating n
identical copies of a broadcast channel, i.e., W⊗n

YZ|X. In Sec-
tion III, we study the first-order asymptotic limit of the
points in M⋆

ϵ (W
⊗n
YZ|X), i.e., the set containing the limits of

( 1n logM, 1
n logN) for ϵ-attainable message-size pairs (M,N)

for W⊗n
YZ|X (known as the simulation region as defined in (21)).

In contrast to the channel coding problem of broadcast chan-
nels, using the one-shot results in Section II, we manage to
derive a single-letter expression of the simulation region.

A more comprehensive version of this paper is available
at [9].

Notations

• Bold symbols are vectors, e.g., xn
1 ≡ (x1, . . . , xn).

• Given two channels WY|X and W̃Y|X, the TVD between
them is defined as∥∥∥W̃Y|X −WY|X

∥∥∥
tvd

:= sup
x∈X

∥∥∥W̃Y|X(·|x)−WY|X(·|x)
∥∥∥
tvd

.

(2)
• The (truncated) spectral divergence of distributions p v.s.q

on a same alphabet X is defined as

Dϵ
s+(p∥q) := inf

{
a⩾0:PrX∼p

[
log

p(X)

q(X)
>a

]
<ϵ

}
(3)

where ϵ ∈ (0, 1).
• The max-divergence of distributions p w.r.t. q on a same

alphabet X is defined as

Dmax(p∥q) := sup
x∈X

{
log

p(x)

q(x)

}
. (4)



• Let XY be random variables jointly distributed according
to pXY, the max information between X and Y is defined
as

Imax(X : Y) := inf
qY

Dmax(pXY∥pX × qY). (5)

• Let XYZ be random variables jointly distributed accord-
ing to pXYZ, the common information among X, Y, and
Z is defined as

I(X : Y : Z) := H(X) +H(Y) +H(Z)−H(XYZ). (6)

The max information among X, Y, and Z is defined as

Imax(X :Y :Z) = inf
qY

inf
rZ

Dmax(pXYZ∥pX×qY×rZ). (7)

• For bipartite broadcast channel WYZ|X, we define

C̃(WYZ|X) := sup
pX∈P(X )

I(X : Y : Z)pX·WYZ|X . (8)

II. ONE-SHOT SIMULATION REGION OF BROADCAST
CHANNELS

A. One-Shot Achievability Bound

Lemma 1 (Bipartite Convex Split Lemma [8, Fact 7, slightly
modified]). Let ϵ, δ1, δ2, δ3 ∈ (0, 1), such that δ21 + δ22 + δ23 ⩽
ϵ2. Let (X,Y,Z) be jointly distributed over X×Y×Z with pmf
pXYZ. Let qY and rZ be two pmfs over Y and Z , respectively.
Let M and N be two positive integers such that

logM ⩾ Dϵ1
s+(pXY∥pX × qY)− log δ21 , (9)

logN ⩾ Dϵ2
s+(pXZ∥pX × rZ)− log δ22 , (10)

logM + logN ⩾ Dϵ3
s+(pXYZ∥pX × qY × rZ)− log δ23 , (11)

for some ϵ1, ϵ2, ϵ3 ∈ (0, 1) such that ϵ1 + ϵ2 + ϵ3 ⩽
ϵ −

√
δ21 + δ22 + δ32 . Let J and K be independently uniformly

distributed on {1, . . . ,M} and {1, . . . , N}, respectively. Let
joint random variables (J,K,X,Y1, . . . ,YM ,Z1, . . . ,ZN ) be
distributed according to

pX,Y1,...,YM ,Z1,...,ZN |J,K(x, y1, . . . , yM , z1, . . . , zN |j, k) =
pXYZ(x, yj , zk) ·

∏
i ̸=j

qY(yi) ·
∏
ℓ ̸=k

rZ(zℓ).(12)

Then,

∥pX,Y1,...,YM ,Z1,...,ZN
−

pX × qY1 × · · · × qYM
× rZ1 × · · · × rZN

∥tvd ⩽ ϵ.
(13)

Theorem 2. Let WYZ|X be a DMC from X to Y ×Z , and let
ϵ ∈ (0, 1). For any ϵ1, ϵ2, ϵ3 > 0 such that ϵ1 + ϵ2 + ϵ3 ⩽ ϵ,
δ1 ∈ (0, ϵ1), δ2 ∈ (0, ϵ2), δ3 ∈ (0, ϵ3), qY ∈ P(Y), and
rZ ∈ P(Z), the following set is a subset of M⋆

ϵ (WYZ|X)

Min
ϵ (WYZ|X) :=

{
(M,N) ∈ Z2

>0 :

logM>Dϵ1−δ1
s+

(
pX ·WY|X

∥∥pX×qY
)
− log δ21

logN>Dϵ2−δ2
s+

(
pX ·WZ|X

∥∥pX×rZ
)
− log δ22

logMN>Dϵ3−δ3
s+

(
pX ·WYZ|X

∥∥pX×qY×rZ
)
− log δ23

∀pX ∈ P(X )


(14)

where the reduced channels WY|X and WZ|X are defined as

WY|X(y|x) :=
∑
z∈Z

WYZ|X(y, z|x), (15)

WZ|X(y|x) :=
∑
y∈Y

WYZ|X(y, z|x). (16)

Proof. For arbitrary qY ∈ P(Y), rZ ∈ P(Z), we present
a protocol for simulating WYZ|X by sending messages with
alphabet sizes M and N to each of the receivers, respectively,
where (M,N) is any integer pair satisfying the conditions on
the RHS of (14). The protocol is as follows:

1) Let the sender and first receiver share i.i.d. random
variables (Y1, . . . ,YM ) where Yk ∼ qY for each k.

2) Let the sender and second receiver share i.i.d. random
variables (Z1, . . . ,ZN ) where Zk ∼ rZ for each k.

3) Upon receiving input X = x, the sender generates a pair
of random variables J,K (distributed on {1, . . . ,M} ×
{1, . . . , N}) according to the following conditional pmf

p̃J,K|X,YM
1 ,ZN

1
(j, k|x,yM

1 , zN
1 ) ∝

WYZ|X(yj , zk|x) ·
∏
i ̸=j

qY(yi) ·
∏
ℓ ̸=k

rZ(zℓ).

4) The sender sends J and K losslessly to the first and
the second receiver using logM -bits and logN -bits,
respectively.

5) Upon receiving J, the first sender outputs YJ.
6) Upon receiving K, the second sender outputs ZK.

It suffices to show the joint pmf of the random variables
XYJZK generated by the above protocol is ϵ-close (in TVD)
to pXYZ := pX ·WYZ|X for any input distribution pX.

Let p̃ denote (joint/marginal/conditional, depending on the
subscript) pmfs of the random variables J, K, X, Y1, . . . , YM ,
Z1, . . . , ZN as in the above protocol. Define the joint pmf
pJ,K,X,Y1,...,YM ,Z1,...,ZN

as

pJ,K,X,YM
1 ,ZN

1
(j, k, x,yM

1 , z
N
1 ) :=

pX,YM
1 ,ZN

1 |J,K(x,y
M
1 , z

N
1 |j, k)

M ·N ,

where pX,YM
1 ,ZN

1 |J,K has been defined in (12). For any input
distribution, by definition, it holds that pX = p̃X. As a direct
result of the protocol, we have

p̃J,K,X,YM
1 ,ZN

1
(j, k, x,yM

1 , zN
1 ) = pX(x)·

M∏
i=1

qY(yi)·
N∏
ℓ=1

rZ(zℓ)·

WYZ|X(yj , zk|x) ·
∏

i ̸=j qY(yi) ·
∏

ℓ ̸=k rZ(zℓ)∑
j′,k′ WYZ|X(yj′ , zk′ |x) ·∏i ̸=j′ qY(yi) ·

∏
ℓ ̸=k′ rZ(zℓ)

.

By Lemma 1 and the requirements we imposed on M and N at
the beginning of this proof (note that ϵ1−δ1+ϵ2−δ2+ϵ2−δ2 ⩽
ϵ−

√
δ21 + δ22 + δ23), it holds that∥∥∥p̃XYM

1 ZN
1
− pXYM

1 ZN
1

∥∥∥
tvd

=

∥∥∥∥∥pX ·
M∏
i=1

qYi ·
N∏
ℓ=1

rZℓ

− 1

M ·N · pX ·
∑
j,k

WYjZk|X ·
∏
i ̸=j

qYi

∏
ℓ̸=k

rZℓ

∥∥∥∥∥
tvd

⩽ ϵ.



Since p̃J,K|X,YM
1 ,ZN

1
= pJ,K|X,YM

1 ,ZN
1

(as deliberately designed),
we have∥∥∥p̃JKXYM

1 ZN
1
−pJKXYM

1 ZN
1

∥∥∥
tvd

=
∥∥∥p̃XYM

1 ZN
1
−pXYM

1 ZN
1

∥∥∥
tvd

⩽ ϵ.

Using the data processing inequality for the total-variation
distance (on the channel (JKXYM

1 ZN
1 ) 7→ (XYJZK)) we have

ϵ ⩾ ∥p̃XYJZK
− pXYJZK

∥tvd =
∥∥p̃XYJZK

− pX ·WYZ|X
∥∥
tvd

.

Since the above discussion holds for all input distributions pX,
we have finished the proof.

B. One-Shot Converse Bound

Lemma 3 (Special case of [10, Cor. A.14]). Let (X,Y,Z) be
joint random variables distributed on X×Y×Z . In particular,
suppose the set Z is finite. Then,

Imax(X : YZ) ⩽ Imax(X : Y) + log |Z|. (17)

Lemma 4. Let (X,Y, Ỹ,Z, Z̃) be joint random variables
distributed on X × Y × Ỹ × Z × Z̃ . Suppose the set Ỹ and
Z̃ are finite. Then,

Imax(X : YỸ : ZZ̃) ⩽ Imax(X : Y : Z)+log
∣∣∣Ỹ∣∣∣+log

∣∣∣Z̃∣∣∣.(18)

Proof. See [9, Lemma 14].

Lemma 5 (Partially inspired by [11, Eq. (48)] and [12,
Eq. (17)]). Let WY|X be a DMC from X to Y where both
X and Y are some finite sets. It holds for all ϵ ∈ (0, 1) and
δ ∈ (0, 1− ϵ) that

inf
W̃Y|X:∥W̃Y|X−WY|X∥tvd

⩽ϵ
max
x∈X

Dmax

(
W̃Y|X(·|x)

∥∥∥qY) ⩾

sup
pX∈P(X )

Dϵ+δ
s+

(
pX ·WY|X

∥∥pX × qY
)
+ log δ

(19)

for any qY ∈ P(Y).

Proof. See [9, Lemma 16].

Theorem 6. Let WYZ|X be a DMC from X to Y ×Z , and let
ϵ ∈ (0, 1). For any δ1, δ2, δ3 ∈ (0, 1− ϵ), the following set is
a superset of M⋆

ϵ (WYZ|X)

Mout
ϵ (WYZ|X) :=

{
(M,N) ∈ Z2

>0 :

logM ⩾ inf
qY

sup
pX

Dϵ+δ1
s+

(
pX ·WY|X

∥∥pX×qY
)
+ log δ1

logN ⩾ inf
rZ

sup
pX

Dϵ+δ2
s+

(
pX ·WZ|X

∥∥pX×rZ
)
+ log δ2

logMN ⩾ inf
qY,rZ

sup
pX

Dϵ+δ3
s+

(
pX ·WYZ|X

∥∥pX×qY×rZ
)
+log δ3

.

(20)

Proof. Let (M,N) ∈ M⋆
ϵ (WYZ|X), i.e., suppose there exists a

size-(M,N) ϵ-simulation code for WYZ|X. Let S and S′ denote
the two shared randomness between the sender and the first
and the second receivers, respectively. Let M and N denote
the two codewords transmitted from the sender to the first and
the second receivers, respectively. Then, for any input source
X ∼ pX, we have a Markov chain Z − NS′ − X − MS − Y
where

• X, S, and S′ are independent.
• The distribution of XYZ, denoted by p̃XYZ, is ϵ-close (in

TVD) to pXYZ := pX ·WYZ|X.
• The marginal distribution

∑
y,z p̃XYZ(x, y, z) = pX(x)

∀x ∈ X .
• M and N are distributed over {1, . . . ,M} and

{1, . . . , N}, respectively.
Pick pX to be some pmf with full support. The following
statements hold.

1) By Lemma 3 and Lemma 4, we have

logM = Imax(X : S) + logM

⩾ Imax(X : MS);

logN = Imax(X : S′) + logN

⩾ Imax(X : NS′);

logM + logN = Imax(X : S : S′) + logM + logN

⩾ Imax(X : MS : NS′).

2) By the data processing inequality of Imax, i.e.,

Imax(A : B) ⩾ Imax(A : C)

for any Markov chain A− B− C, we have

Imax(X : MS) ⩾ Imax(X : Y)

Imax(X : NS′) ⩾ Imax(X : Z)

Imax(X : MS : NS′) ⩾ Imax(X : Y : Z) .

3) By the definition of Imax, and noting that p̃X = pX, we
have

Imax(X : Y) = inf
qY

Dmax(p̃XY∥pX × qY)

= inf
qY

max
x

Dmax

(
p̃Y|X(·|x)

∥∥qY)
⩾ inf

qY

inf
∥W̃Y|X−WY|X∥tvd

⩽ϵ
max

x
Dmax

(
W̃Y|X(·|x)

∥∥∥qY)
Imax(X : Z) = inf

rZ
Dmax(p̃XZ∥pX × rZ)

= inf
rZ

max
x

Dmax

(
p̃Z|X(·|x)

∥∥rZ)
⩾ inf

rZ

inf
∥W̃Z|X−WZ|X∥tvd

⩽ϵ
max

x
Dmax

(
W̃Z|X(·|x)

∥∥∥rZ)
Imax(X :Y :Z) = inf

qY
inf
rZ

Dmax(p̃XYZ∥pX × qY × rZ)

= inf
qY

inf
rZ

max
x

Dmax

(
p̃YZ|X(·|x)

∥∥qY×rZ
)

⩾ inf
qY

inf
rZ

inf
∥W̃YZ|X−WYZ|X∥tvd

⩽ϵ
max

x
Dmax(

W̃YZ|X(·|x)
∥∥∥qY × rZ

)
.

The theorem can be proven by combining the above three steps
and Lemma 5.

III. SIMULATION RATE REGION OF BROADCAST
CHANNELS

In this section, we consider the task of simulating W⊗n
YZ|X.

In asymptotic discussions, one is usually more interested in
admissible rates instead of admissible messages sizes. For our



sup
xn

1

 1

n

n∑
i=1

D

WYZ|X(·|xi)

∥∥∥∥∥∥
∑

x̃,z̃

WYZ|X(·, z̃|x̃) · fxn
1
(x̃)

×

∑
x̃,ỹ

WYZ|X(ỹ, ·|x̃) · fxn
1
(x̃)


+

1√
n(ϵ3 − δ3)

·

√√√√√ 1

n

n∑
i=1

V

WYZ|X(·|xi)

∥∥∥∥∥∥
∑

x̃,z̃

WYZ|X(·, z̃|x̃) · fxn
1
(x̃)

×

∑
x̃,ỹ

WYZ|X(ỹ, ·|x̃) · fxn
1
(x̃)




− 1

n
log δ23 +

2

n
log |Λn|

(∗)

task of simulating WYZ|X asymptotically, a rate pair (r1, r2)
(of positive real numbers) is said to be ϵ-attainable if there
exists a sequence of size-(⌊2nr1⌋ , ⌊2nr2⌋) ϵ-simulation codes
for W⊗n

YZ|X for n sufficiently large. We denote R⋆
ϵ (WYZ|X) the

closure of the set of all ϵ-attainable rate pairs, i.e.,

R⋆
ϵ (WYZ|X) := cl

({
(r1, r2) ∈ R2

⩾0

∣∣∣∃N ∈ N s.t.

(⌊2nr1⌋ , ⌊2nr2⌋) ∈ M⋆
ϵ (W

⊗n
YZ|X) for all n ⩾ N

}) (21)

Theorem 7. Let WYZ|X be a DMC from X to Y ×Z , and let
ϵ ∈ (0, 1). It holds that

R⋆
ϵ (WYZ|X) =

(r1, r2) ∈ R2
⩾0

∣∣∣∣∣∣∣
r1 ⩾ C(WY|X)

r2 ⩾ C(WZ|X)

r1+r2 ⩾ C̃(WYZ|X)

. (22)

We need the following lemma to prove the above theorem.

Lemma 8. For any pXY ∈ P(X × Y × Z), ϵ ∈ (0, 1), and
δ ∈ (0, 1−ϵ

2 ), it holds that

inf
qY∈P(Y),rZ∈P(Z)

Dϵ
s+(pXYZ∥pX × qY × rZ)

⩾ Dϵ+2δ
s+ (pXY∥pX × pY × pZ) + 2 log δ.

(23)

Proof. See [9, Lemma 18].

A. Achievability Proof of Theorem 7
Applying Theorem 2, we have the following set being a

subset of M⋆
ϵ (W

⊗n
YZ|X)

Min
ϵ (W

⊗n
YZ|X) :=

{
(M,N) ∈ Z2

>0 :

logM > Dϵ1−δ1
s+

(
pXn

1
·W⊗n

Y|X

∥∥∥pXn
1
× qYn

1

)
− log δ21

logN > Dϵ2−δ2
s+

(
pXn

1
·W⊗n

Z|X

∥∥∥pXn
1
× rZn

1

)
− log δ22

logMN > Dϵ3−δ3
s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
−log δ23

∀pXn
1
∈ P(Xn)


.

for any ϵ1, ϵ2, ϵ3 > 0 such that ϵ1 + ϵ2 + ϵ3 ⩽ ϵ, δ1 ∈ (0, ϵ1),
δ2 ∈ (0, ϵ2), δ3 ∈ (0, ϵ3), qYn

1
∈ P(Yn), and rZn

1
∈ P(Zn).

We pick qYn
1

and rZn
1

as

qYn
1
:=
∑
λ∈Λn

1

|Λn|

∑
x̃,z̃

WYZ|X(·, z̃|x̃) · pλ(x̃)

⊗n

,

rZn
1
:=
∑
λ∈Λn

1

|Λn|

∑
x̃,ỹ

WYZ|X(ỹ, ·|x̃) · pλ(x̃)

⊗n

.

We have the following chain of inequalities.

inf
qYn

1
,rZn1

sup
pXn1

1

n
Dϵ3−δ3

s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
− 1

n
log δ23

a)
⩽ inf

qYn
1
,rZn1

sup
xn

1

1

n
Dϵ3−δ3

s+

(
W⊗n

YZ|X(·|xn
1 )
∥∥∥qYn

1
× rZn

1

)
− 1

n
log δ23

b)
⩽ sup

xn
1

1

n
Dϵ3−δ3

s+

(
W⊗n

YZ|X(·|xn
1 )

∥∥∥∥∥ ∑
λ∈Λn

1

|Λn|

(∑
x̃,z̃

WYZ|X(·, z̃|x̃)

·pλ(x̃)
)⊗n

×
∑
λ∈Λn

1

|Λn|

∑
x̃,ỹ

WYZ|X(ỹ, ·|x̃) · pλ(x̃)

⊗n)

− 1

n
log δ23

c)
⩽ sup

xn
1

1

n
Dϵ3−δ3

s+

(
W⊗n

YZ|X(·|xn
1 )

∥∥∥∥∥
(∑

x̃,z̃

WYZ|X(·, z̃|x̃)·fxn
1
(x̃)

)⊗n

×
(∑

x̃,ỹ

WYZ|X(ỹ, ·|x̃) · fxn
1
(x̃)

)⊗n)

− 1

n
log δ23 +

2

n
log |Λn|

d)
⩽ (∗) at the top of this page
e)
⩽ sup

pX

I(X : Y : Z)pX·WYZ|X +
1√

n(ϵ3 − δ3)
· Ṽ (pX)

− 1

n
log δ23 +

2

n
log |Λn|

where for a) we use the quasi-convexity of Ds+(pX ·pY|X∥pX ·
qY|X) in pX, for b) we pick a pair of specific qYn

1
and rZn

1

as aforementioned to upper bound the infimum, for c) we
use [13, Lemma 3], for d) we use the Chebyshev-type bound
in [13, Lemma 5], and e) is a result of direct counting and the
definition of the common dispersion Ṽ as

Ṽ (p) :=
∑
x

p(x) · V
(
WYZ|X(·, ·|x)

∥∥∥∥∥∑
x̃,z̃

p(x) ·WYZ|X(·, z̃|x̃)

×
∑
x̃,ỹ

p(x) ·WYZ|X(ỹ, ·|x̃)
)
.



Notice that Ṽ is bounded. Thus, it holds that

lim sup
n→∞

inf
qYn

1
,rZn1

sup
pXn1

1

n
Dϵ3−δ3

s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
− 1

n
log δ23 ⩽ sup

pX

I(X : Y : Z)pX·WYZ|X = C̃(WYZ|X). (A)

Similarly, one can show

lim sup
n→∞

inf
qYn

1

sup
pXn1

1

n
Dϵ1−δ1

s+

(
pXn

1
·W⊗n

Y|X

∥∥∥pXn
1
× qYn

1

)
− 1

n
log δ21 ⩽ C(WY|X),

(B)

lim sup
n→∞

inf
rZn1

sup
pXn1

1

n
Dϵ2−δ2

s+

(
pXn

1
·W⊗n

Z|X

∥∥∥pXn
1
× rZn

1

)
− 1

n
log δ22 ⩽ C(WZ|X).

(C)

Combining (A), (B), and (C) with the expression of
Min

ϵ (W
⊗n
YZ|X) at the begining of this proof, it is straightforward

to check that any integer pair (⌊2nr1⌋ , ⌊2nr2⌋) with

(r1, r2) ∈

(r1, r2) ∈ R2
⩾0

∣∣∣∣∣∣∣
r1 > C(WY|X)

r2 > C(WZ|X)

r1 + r2 > C̃(WYZ|X)

 , (D)

must be in Min
ϵ (W

⊗n
YZ|X) for n sufficiently large, i.e., RHS

of (D)⊂ R⋆
ϵ (WYZ|X). This proves the RHS of (22) being a

subset of R⋆
ϵ (WYZ|X) since the latter is a closed set.

B. Converse Proof of Theorem 7

Let (r1, r2) be arbitrarily pair of non-negative numbers such
that (2⌊nr1⌋, 2⌊nr2⌋) ∈ M⋆

ϵ (W
⊗n
YZ|X) for n sufficiently large,

i.e., (r1, r2) is an arbitrarily interior point of R⋆
ϵ (WYZ|X).

Applying Theorem 6, we have the following set being a
superset of M⋆

ϵ (W
⊗n
YZ|X)

Mout
ϵ (W⊗n

YZ|X) :=
{
(M,N) ∈ Z2

>0 :

logM ⩾ inf
qYn

1

sup
pXn1

Dϵ+δ1
s+

(
pXn

1
·W⊗n

Y|X

∥∥∥pXn
1
× qYn

1

)
+log δ1

logN ⩾ inf
rZn1

sup
pXn1

Dϵ+δ2
s+

(
pXn

1
·W⊗n

Z|X

∥∥∥pXn
1
× rZn

1

)
+log δ2

logMN ⩾ inf
qYn

1
,rZn1

sup
pXn1

Dϵ+δ3
s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
+ log δ3


.

for any δ1, δ2, δ3 ∈ (0, 1− ϵ). Thus, we have

r1
a)
⩾ inf

qYn
1

sup
pXn1

1

n
Dϵ+δ1

s+

(
pXn

1
·W⊗n

Y|X

∥∥∥pXn
1
×qYn

1

)
+

1

n
log δ1

r2
b)
⩾ inf

rZn1

sup
pXn1

1

n
Dϵ+δ2

s+

(
pXn

1
·W⊗n

Z|X

∥∥∥pXn
1
×rZn

1

)
+

1

n
log δ2

r1 + r2
c)
⩾ inf

qYn
1
,rZn1

sup
pXn1

1

n
Dϵ+δ3

s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
+
1

n
log δ3

for n sufficiently large. By Lemma 8, we can rewrite c) as

r1 + r2 ⩾ sup
pXn1

inf
qYn

1
,rZn1

1

n
Dϵ+δ3

s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×qYn

1
×rZn

1

)
+
1

n
log δ3

⩾ sup
pXn1

1

n
Dϵ+3δ3

s+

(
pXn

1
·W⊗n

YZ|X

∥∥∥pXn
1
×pYn

1
×pZn

1

)
+

3

n
log δ3.(E)

Using the information spectrum method [14], we know
limn→∞ RHS of (E) = C̃(WYZ|X). Since (E) holds for all n
sufficiently large, the inequality is maintained as n → ∞, i.e.,
r1 + r2 ⩾ C̃(WYZ|X).

Similarly, using [11, Lemma 10] with a) and b), one can
show r1 ⩾ C(WY|X) and r2 ⩾ C(WZ|X), respectively.

Since (r1, r2) are picked arbitrarily, we have shown{
(r1, r2) ∈ R2

⩾0

∣∣∣∃N ∈ N s.t. (⌊2nr1⌋ , ⌊2nr2⌋) ∈ M⋆
ϵ (W

⊗n
YZ|X)

for all n ⩾ N
}
⊂ LHS of (22).

Finally, taking closure of the sets on both sides we have
R⋆

ϵ (WYZ|X) ⊂ LHS of (22).

C. Numerical Example

The mutual information and multi-partite common infor-
mation can be computed via a Blahut–Arimoto type algo-
rithm [15], [16]. We refer to [9, Section V-D] for details.

IV. CONCLUSION

In this paper, we investigated the task of simulating discrete
broadcast channel in both one-shot and i.i.d. setups. The one-
shot results are based on the bipartite convex split lemma and
multi-partite generalizations of some of the popular tools in
the finite blocklength information theory. Based on the one-
shot results, we managed to obtain a single-letter expression of
the simulation region of the broadcast channels, which is very
different from the corresponding channel coding problem. We
would like to point out that all work presented in this paper
can be generalized to K-receiver broadcast channel rather
straightforwardly.
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