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Quantum state preparation problem

• Given the function 𝑓: 𝑎, 𝑏 → ℝ, prepare the 𝑛-qubit quantum state
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with uniform grid �̅� ≔ 𝑎 + " (&)
%!

, normalization 𝒩! ≔ ∑"̅ |𝑓|%(�̅�)
• Important sub-routine in a variety of quantum algorithms, for different 

functions of interest
• Minimize number of non-Clifford gates and ancilla qubits



Standard approach(es)

• Amplitude oracle U+ ∶ 𝑥 𝑗 ↦ 𝑥 |𝑓 �̅� ⊕ 𝑗⟩ that prepares 𝑔-bit 
approximation of the values 𝑓(�̅�)
• Implemented via reversible computation, using piecewise polynomial 

approximation of the function 𝑓(𝑥)
• Alternatively, reading values stored in a quantum memory
• Downsides:
• Handcrafted for every function + discretization of values of function
• Large ancilla cost – not suited for early fault-tolerant regime

• Other approaches with similar bottlenecks: Grover-Rudolph, 
adiabatic, repeat until success, matrix product states, etc.



Quantum eigenvalue transformation (QET)
• A framework to coherently apply functions to the eigenvalues of a 

Hermitian matrix
• An 𝛼,𝑚, 𝜀 -block encoding of an 𝑛-qubit Hermitian 𝐴 is an (𝑛 + 𝑚)-

qubit unitary 𝑈 with

||𝛼 0|⊗- ⊗1. 𝑈 |0 ⊗- ⊗1. − 𝐴|| ≤ 𝜀

• Base functions are even degree 𝑑 polynomials
à QET circuit output is block encoding 𝑈/" of the matrix 𝐴0 (normalized)
• Implementation cost:
• !

" applications of 𝑈 and 𝑈∗

• 2𝑑 many 𝑚-controlled Toffoli gates (CNOT for 𝑚 = 1)
• 𝑑 single-qubit 𝑍-rotations 𝑅" 𝜃# ≔ exp −𝑖𝜃#𝑍 on additional ancilla qubit



QET continued

• Efficient classical pre-computation of angle set {𝜃', 𝜃%, ⋯ , 𝜃0}
• Odd polynomials, general functions via polynomial approximation, 

complexity given by degree of polynomial – technical conditions omitted

(Extension: Quantum singular value transformation (QSVT) for general matrices 𝐴)

• Example circuit for even degree 𝑑 polynomial and 𝑚 = 1:



Main idea: State preparation via QET

• Create low-cost block encoding 
of 𝐴 ≔ ∑"#$%!&' sin #

$! |𝑥⟩⟨𝑥| via

(exact (1,1,0) block encoding)

• Idea: Applying QET, convert this into block encoding of ∑!"#$!%& 𝑓(�̅�)|𝑥⟩⟨𝑥|
using polynomial approximation of 𝑓 𝑏 − 𝑎 arcsin ⋅ + 𝑎
• Run relevant circuits on input |𝑥&⋯𝑥'⟩ ⊗ |000⟩( = |+⟩⊗'|000⟩( and use 

amplitude amplification to maximize probability of outputting
|Ψ*⟩ ⊗ |000⟩(

𝑅! 𝛼 ≔ exp −𝑖𝛼𝑌



Quantum circuits
1. 𝑈123 block encoding

circuit

2. 𝑈 4! block encoding
circuit

3. Amplitude amplification
(exact) circuit



Main result complexities

• Discretized 𝐿%-norm filling-fraction (𝑁 ≔ 2.) as
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• Theorem I: Given a degree 𝑑< polynomial approximation V𝑓 of 𝑓,(∗) we 
can prepare a quantum state |Ψ 4!⟩ that is 𝜀-close in trace distance to 
|Ψ!⟩ using 𝑂 .0/

ℱ01
' gates + 4 ancilla qubits, for 𝛿 = 𝜀min{ℱ!

5 , ℱ 4!
5 }.

(∗) when 3𝑓(⋅) applied to sin -
. approximates / -̅

|/|#$%
to 𝐿2-error on [𝑎, 𝑏]



Main result complexities simplified

• Theorem II: For sufficiently smooth functions 𝑓, ∗ we can prepare a 
quantum state |Ψ 4!⟩ that is 𝜀-close in trace distance to |Ψ!⟩ using

Z𝑶 !234 5()

ℱ01
' gates + 4 ancilla qubits.

(∗) need 𝐿2-approximation 𝛿 ∝ exp(−𝑑3) for degree 𝑑3 polynomial

• Analytical minimax polynomial
• In practice use (works very well):
• Remez approximation or just Local Taylor series
• 𝐿4-approximation on grid



Complexity comparison literature

Note: 𝑔&-bit amplitude oracles with degree ,𝑑& piecewise polynomial approximation ( ,𝑑& ≠ 𝑑& in general)



Analytical performance: Gaussians

• Example function 𝑓? 𝑥 ≔ exp &7$𝑥
%

• Theorem III: For 𝜀 ∈ 0, )$ and 0 ≤ 𝛽 ≤ 2. we can prepare the 
[−1,1] uniform grid Gaussian state on 𝑛 qubits up to 𝜀-precision with 
gate complexity

𝑂 .⋅ABC
8
9 )
5 + 3 ancilla qubits

• Note: All other approaches use hundreds of ancilla qubits

• Kaiser window state variant |𝑊?
5(�̅�)⟩ ∝ ∑#%('

' )
$'⋅

:& 7 )(;#$

:&(7)
on [−1,1]



Numerical benchmarking: tanh(x)

• Example function tanh(𝑥) in the range 𝑥 ∈ [0,1] on 𝑛 = 32 gives

• Cost are lower bounds minimizing gate count, based on state-of-the-
art amplitude oracles (which could potentially be improved)
• Other methods give even higher costs



Run Algorithm: Setup

• Treat special case: 𝑎 = −1, 𝑏 = 1, with function 𝑓 𝑥 = 𝑓(−𝑥)
• Goal: Prepare the 𝑛-qubit quantum state

Ψ! = '
𝒩1

⋅ ∑"#&5/%
5/%&' 𝑓 �̅� |𝑥⟩ with �̅� = $#

' , and 𝒩! = ∑"̅ 𝑓(�̅�)

1. Start with block encoding of 𝐴 = ∑"#&5/%
5/%&' sin $#

' |𝑥⟩⟨𝑥|

2. QET to convert into block encoding of ∑"#&5/%
5/%&' 𝑓(�̅�)|𝑥⟩⟨𝑥|

3. 𝑂 1/ℱ 4!
5 rounds of exact amplitude amplification (extra ancilla)

• Need to start with (extensive) classical pre-processing



Run algorithm: Quantum circuits
1. 𝑈123 block encoding

circuit

2. 𝑈 4! block encoding
circuit

3. Amplitude amplification
(exact) circuit



Run algorithm: Classical pre-computation
• Compute polynomial ℎ(𝑦) such that

|ℎ 𝑦 |FGH
I∈ &',' ≤ 1 and ℎ sin 𝑦 − 1(>)

1 > *+,
>∈ (),)

FGH

I∈ &','
≤ 𝛿

leading to approximation V𝑓 𝑥 ≔ h sin �̅�
(Remez algorithm / local Taylor series / 𝐿4-approximation on grid / …)

• Compute discretized 𝐿%-norm filling-fraction ℱ 4!
5 ≈ ℱ 4!

; of V𝑓(𝑥)
(choose depending on how large 𝑁 = 25 is)

• Compute QET angle set {𝜃', 𝜃%, ⋯ , 𝜃0} of polynomial V𝑓(𝑥)
(different analytically and/or numerically good methods available)



Extensions



Extensions: Non-smooth functions

• First approach: Use coherent inequality test with flag qubit for 
piecewise QET polynomial implementation

à for 𝑘 discontinuities this requires (𝑘 + 𝑛) ancilla qubits and 2𝑘𝑛
Toffoli gates for the inequality comparison
• Second approach: Example triangle function for �̅� ∈ [0,1]

instead use

à use coherent inequality test to flip for �̅� > )
A and in the end reverse 

this inequality check



Extensions: Fourier based QET

• Block-encoding of 𝐴 is replaced by controlled time evolution
𝑉 𝐴 ≔ |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ exp 𝑖𝐴𝑡

• Fourier-based QET uses calls to 𝑉(𝐴), together with single-qubit-
rotations, to apply a function 𝑓 ⋅ in Fourier series form to 𝐴
• We can implement 𝑉(𝐴) for diagonal 𝐴 = ∑" �̅�|𝑥⟩⟨𝑥| using 𝑛

controlled 𝑍-rotations
• Example with compact Fourier series: Cycloid function
à 𝑛 = 32 for �̅� ∈ [0,2𝜋], gives 7.35×10L Toffoli gates

+ 3 ancillas qubits
From Wikipedia



Outlook

• Introduced versatile method for preparing a quantum state whose 
amplitudes are given by some known function
• Based on the QET, orders of magnitude savings in ancilla qubits
• Needed: More detailed practical resource estimates, more functions, 

combination with other methods, etc.
• Open questions:
• Example square root function �̅� for �̅� ∈ [0,1], non-differentiable at �̅� = 0
à use �̅� + 𝑎 instead?

• Multivariate functions via multivariate QET?

Thank you
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