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Information science

* Theory of information processing:
Mathematical foundations in 1940s

* Abstract theory independent of
implementation
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* Question: Also independent
of underlying physics?



Quantum information science

* Notion of information for microscopical systems described by quantum
mechanics? Quantum information # classical information

 Bell's theorem (1964): Quantum mechanics is
incompatible with local hidden-variable theories

John Stewart Bell

\‘ * New research area based on quantum technologies:
D} o Computing, communication, cryptography, sensing, ...
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Theory of qguantum information science

 Our focus areas:

1. Mathematical foundations of quantum information
2. Quantum algorithm development

* Cluster of Excellence: Matter and Light for Quantum Computing (ML4Q,)
* Visiting Reader at Department of Computing Imperial College London
* Industry ties with Amazon Web Services Center for Quantum Computing
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Today: Quantum algorithms



Origins of guantum computing

Understanding physics with computers (1981):

“trying to find a computer simulation of physics seems to me to
be an excellent program to follow out (...) nature is not classical,
dammit, and if you want to make a simulation of nature, you
will better make it quantum mechanical, and by golly it is a
wonderful problem, because it does not look so easy”

Richard Feynman

* First query complexity separation results in 1990s
* Breakthrough prime factorization (1994):

n-bit integer factorization in quantum complexity 0(n? logn)
2

versus classical complexity O (exp (1.9 -n3 (log n)E))

Peter Shor



Quantum algorithms research

* Steady progress on quantum algorithm development since 1990s, recent
flurry of activities and results
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* Breakthrough prize in physics 2023:

“foundational work in the field of
guantum information”

BLiniis Y

Charles H. Bennett Gilles Brassard David Deutsch Peter Shor

e Ultimate goal: Quantify classical-quantum complexity boundary



Classical versus quantum technologies

* Do algorithms based on quantum components, including
e guantum processing units (QPU)
e guantum random access memory (QRAM)

provide computational advantages compared to classical components?

* Goal is to identify use cases / areas of Cessentore
applications with processing

* large (super-quadratic) quantum speed-up =
* minimal quantum footprint, i.e., use B
classical routines whenever possible

Y

Classical post-
processing

Quantum resources



Basics



Classical vs guantum model of computation

* What can be realized within abstract model of quantum mechanics?

* Bloch sphere representation of a two-level system — aka quantum bit —
aka qubit:

U6 ¢) [0) = |v)
d
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Classical vs guantum model of computation

* What can be realized within abstract model of quantum mechanics?

{p(x)}§c=1

* Classical versus quantum circuit model:

{0,1}™
{O,l}n bits (CZ)®n ((CZ)(X)TL
bits qubits qubits
p}x=1 ¥ {a)}y=1 W) = Pn) = Up [Yn)

function f unitary Uy

—int

* Schrodinger time evolution operator Ur = e + measurements



Quantum circuit model

w03E., * Where does quantum speed-up come from?

—> precise mathematical reason: complex

(C?)®n numbers allow for constructive interference
qubits

[¥n)

* Decomposition into set of elementary quantum gates, e.g., single qubit
Pauli X,Y,Z and T gates, together with two qubit CNOT gate

* Quantum complexity = minimal number of elementary quantum gates



Quantum hardware



Quantum hardware

* Different technologies: Superconductors, ion
traps, neutral atoms, photonics, etc.

* Groundbreaking physics experiments with 6
orders of magnitude improvements in 30 years+

4 |1BM superconducting qubits

* Nobel prize in physics 2022:

“experiments with entangled photons,
establishing the violation of Bell inequalities
and pioneering quantum information science”
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Current quantum technologies

* Led by quantum industry,

hundreds of billion dollars scale

* IBM Quantum: (up to 433 qubits)

Falcon:
27 qubits

T

W

Hummingbird:
65 qubits

EE

Eagle:
127 qubits

* Google Quantum:

(54 qubits)

Osprey:
433 qubits

-e Ses ST Tes ves 1ew

B 0 S 2 2N 2

o
o0

4
o3

4
b 4

4
4
4
e

X
3
3
x

b 4
¢ 3
¢ 3
x

X
3
x
x

X
3
3
R 4

x
K,
¢ 3
2

o¢
b
4
R 4

9,
Qx: @,
@,

9,

9,

4
> 0
. 07,
X,

4
L W

OxO
¢
e s

4
X

g

9,
9,
®,
@,
9,

OxQ
X
%
%
%
5

g
x’

b

N
®,
4
»,
4
®,
e
»,
pe s
»,
e

4
X:
o %

¢

DR

Xe

Kow @

 Severe restrictions: Qubit count, qubit connectivity, one qubit gates
(Pauli), two qubit gates (CNOT), read-out errors (measurement), clock
speed, and more



Quantum algorithm design



Regimes for quantum algorithm design

* Nascent state of quantum technologies gives noisy and intermediate scale
guantum (NISQ) computing, i.e.,

 Quantum annealers
* Analogue simulators, not universal, not fully programmable

* NISQ digital quantum circuits, inbuilt noise resilience, error mitigation, severe
scaling limitations, etc.

* Versus what one really wants long-term:

Quantum error-corrected and scaling qguantum computer

(roughly two orders of magnitude away)

* Any intermediate regimes of interest?



Early fault-tolerant regime
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performance

* Run many small
circuits

» Leverage some
classical power

» Usually no
runtime/success
guarantees
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Early fault-tolerant regime

A
performance

* Run many small
circuits 2

» Leverage some

classical power near term

» Usually no
runtime/success
guarantees

I S
I 7

present timeline




Early fault-tolerant regime

N
performance « Large hardware

requirements

» Specified in terms of
query complexity

* Run many small
circuits 2

* Runtime guarantees

» Caveats can cloud
convincing practical
near term advantage
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Early fault-tolerant regime
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Early fault-tolerance characteristics

* Limited number of logical qubits, with limited quantum clock speed from
error correction overhead

* Price of resources from most expensive to cheap:

1. Number of qubits

2. Depth of quantum circuits

3. Sample complexity

4. Classical pre- and post-processing

e Goal is flexible trade-off between different resources

e Stay with provable worst-case guarantees + add strong heuristic about
average case performances



Our work on early fault-tolerance

* Hybrid classical-quantum schemes with end-to-end complexity analysis

Classical post-
processing

Classical pre-
processing

Quantum data access
model

Quantum resources

e Resource estimates for comparison with state-of-the-art classical methods



Quantum
Algorithms Wiki

Quantum algorithms:

A survey of applications and end-to-end complexities

Alexander M. Dalzell*!  Sam McArdle*!  Mario Bertal'?? Przemyslaw Bienias!

Chi-Fang Chen>* Andrés Gilyén?  Connor T. Hann!  Michael J. Kastoryanol:

Emil T. Khabiboulline>” Aleksander Kubica!  Grant Salton!*® Samson Wang!3
and Fernando G. S. L. Brandao!'*

LAWS Center for Quantum Computing, Pasadena, CA, USA
2 Institute for Quantum Information, RWTH Aachen University, Aachen, Germany
3 Imperial College London, London, UK
4 Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA

5 Alfréd Rényi Institute of Mathematics, Budapest, Hungary

SIT University of Copenhagen, Copenhagen, Denmark
" Department of Physics, Harvard University, Cambridge, MA, USA

8 Amazon Quantum Solutions Lab, Seattle, WA, USA

* Brand new (05/10/2023) — available at arXiv:2310.03011



Example applications



Quantum simulation for scientitfic computing

Computer Science
Mechanics & ‘KL
Engineering 11% \
Chemistry &
 Materials 28%
Earth & Environ.
Science 14%

\ Physics

28%

Life Science ~

17%

Swiss National Supercomputing Centre Annual Report 2022



Example: Ground state energy
estimation

Randomized quantum algorithm for statistical phase estimation

Physical Review Letters (2022) with Campbell and Wan
Quantum Information Processing (QIP) 2022



Quantum many body systems

e Consider n-qubit Hamiltonian
H = Y1, a;P* with P* n-qubit Pauli operator,
e, '"=P Q- Q P, withP, e {X,Y,Z,1}
e Native example: Ising model on two-dimensional square lattice
Hising = C - zzi,j ® Ziv1,j +2ij O Zyjq
JEJ

e General fermionic or bosonic systems from condensed matter physics and
computational chemistry can be mapped efficiently to qubits



Problem: Ground state energy estimation

e Given n-qubit Hamiltonian
H := Y7_, a;P; with P, n-qubit Paulis

and one-norm A = lellall, together with efficiently preparable n-qubit
ansatz state |Y) with overlap

(Polp) 21 >0

for true ground state |@,) with energy E,

e Goal: Compute estimate E, with precision ‘E"O — Eo‘ <A



Early fault-tolerance approach

1. Minimize number of qubits needed — only one ancilla

/
/

|0) —— HAD T G — HAD A 0) —— HAD
U]

]

/

G_

HAD

/

2. Trade-off gate versus sample complexity
3. Decrease error by solely taking more samples
Independent of the number L of Pauli terms in H




Algorithmic result: Quantum phase estimation

e Output E, with ‘E"O — EO‘ < A with probability 1 — ¢ by employing

Csample — 6 (7’] _2) [= 0 (77‘210g2 (AA‘llog(n‘1))log(€‘1log(AA‘1)))]

quantum circuits on n 4+ 1 qubits, each using one copy of |Y) and

C

gate — G(AZA_Z) |= 0(2247%10g?(n™h))]

single-qubit Pauli rotations exp(i0P;)

* Note: Ansatz state n-overlap bottleneck vs classical methods



Basic idea

C(z)
e Cumulative distribution function 4
(CDF) relative to |Y) is
C(x) = Tr[pll] (PIMag, 1) -
77 —_
* Evaluate C(x) via quantum?

* Two algorithmic ingredients:

(A) Hadamard test
(B) Importance sampling



Workhorse A: Hadamard test

* Input: n-qubit state |1) together with n-qubit unitary U

e Quantum circuit:

0) ——

HAD

T

G

HAD

) —f

* Qutput is unbiased estimate of (Y |U|y) from

G =1 = E[X] =Re((¥|U[¥))
G =S5" = E[X] =Im(|U[Y))

U

g

+1
—1

if |0)
if |1)



Workhorse B: Importance sampling

 Estimate linear combination:

Z a; Tr[ for unitaries U; with a; > 0 and normalization A := Zj a

* Sample j with probability a; - A~ and perform Hadamard test on

(1), U;):

) = estimate (Y |U;|Y)

/
/

0) —— HAD T G HAD A
UJ

* Take average of samples, number required is [A%c 2] for variance ¢ > 0



CDF via Fourier series

* Replace Heaviside ©(x) by finite Fourier series F(x) = ). jes F}-eijx
* Approximate CDF:
CO) ~ ()0 = ) Frel~ - (plett|y)

JES
with runtimes t; = j X normalization

 Hadamard test + importance sampling + Hamiltonian simulation:

R 8 A A W A L




FeMoco benchmark — resource trade-offs

e Lietal FeMoco Hamiltonian with

152 spin orbitals: 152+1=153 20001
qubits —~
e Chemical accuracy A = 0.0016 l’% 1000y
Hartree, one-norm A = 1511 U e=03

T

» State-of-the-art qubitization ] 09
z
Coate = 3.2 - 1010 on 2196 qubits < | _e=01
gate ’ € = 0.05——

* Ansatz state n-overlap bottleneck + 110" 2x10" 5x10" Ix 10"
classical methods scale polynomiall!



Example: Linear algebra on
classical data

Qubit-efficient randomized quantum algorithms for linear algebra

arXiv:2302.01873 (2023) with McArdle and Wang

Quantum Computing Theory in Practice (QCTIP) 2023
Theory of Quantum Computation, Communication and Cryptography (TQC) 2023
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Quantum algorithms for classical data

Classical Classical
Pre- post-
processing processing

Quantum data
access model

Quantum resources



|dea I: Parallelize quantum sub-routines

Classical |
ore- Classical
processing post—.
processing

L

\ J

Y

Each O(log(N)) qubits



|dea II: Classical instead of quantum access

Classical
pre-
processing

L Quantum data

access model

Classical
post-
processing

o

Our work

Classical
data access
model

Classical
pre-
processing

%

Classical
post-
processing




Conclusion



Quantum algorithms for early fault-tolerance

e Use as few qubits and quantum routines as possible, use classical
methods whenever sufficient

* Early fault-tolerant methods can even be competitive with state-of-the-
art (non-qubit aware) schemes in terms of asymptotic complexities

Classical
pre-
processing

Classical
post-
processing | o, wor

Classical Classical
assica ore-

data access l orocessing

model
%
Quantum data

access model

Classical
post-
processing




Outlook

* Quantum resource counts for applications featuring end-to-end
complexity analyses, qguantum speed-up?

- upcoming popular article DPG Physik Journal (November issue)

* Guiding questions:

* What quantum algorithms do we eventually want to run?

* For what applications is the quantum footprint the smallest to become
competitive with classical methods?

* 50-100 error corrected qubits could allow for truly insightful experiments

Thank youl! RWTH




Some references



Paper references to some of our work

* A randomized quantum algorithm for statistical phase estimation
QIP22, Physical Review Letters (2022) with Campbell, Wan

* Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle, Wang

* Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen

* Quantum resources required to block-encode a matrix of classical data
IEEE Transactions on Quantum Engineering (2022) with Clader, Dalzell, Stamatopoulos, Salton, Zeng

* A streamlined quantum algorithm for topological data analysis with

exponentially fewer qubits
QIP23, arXiv:2209.12887 (2022) with McArdle, Gilyen

* Sparse random Hamiltonians are quantumly easy
QIP23, arXiv:2302.03394 (2023) with Chen, Dalzell, Brandao, Tropp



Extra content ground state energy



Hydrogen chain benchmark — scaling

For length N chain, one-norm estimate 1 ~ O(N13%)
Our work Cygee = O(N#°%A72)

Comparison to state-of-the-art qubitization:
A. rigorous Cygee = O(N33*A71)
B. sparse method Cyqee = O(N%3A7)

C. tensor hypercontraction method Cyqee = O(N*1A™Y)

Extensive properties A oc N interesting for our methods: Cyqr = O (N %)



Fourier series lemma (Heaviside function)

C(z) C(x)
P A
| i ; iy
I I

5 —rp
tr[pll<g,] - i tr[pll< g, ] -
7 - i 1N -

I > —\\)A\JI
Eo Ey

* Improved Fourier series approximation of Heaviside function

 Technical contribution:

Gate complexity for precision A > 0 from 0(A™2log?(A™1)) to 0(A™2)

[Lin & Tong, PRX Quantum (2022)]

€I



Random compiler lemma (Hamiltonian simulation)

* For e with H = Y I, a;P;, we give linear combination of unitaries (LCU) et =

Y. bi U such that:

|0) ——HAD T G HAD A=
L u()=Xpbe <exp(t’r™) p— U
II. COST(C — U) = r controlled single qubit Pauli rotations Vk

e Gate complexity 7 versus sample complexity exp(t?r 1)
e Example: 7 = 2t? 2 u < +/e and COST(C — U;,) = 2t*

* Use thison: C(x) = X jes Fjeijx ' Tr[peitfH]



Random compiler for CDF

+ CDF C(x) ~ X Fje* - Tr[pe'i"] becomes C(x) ~ X; Xx Fre b Tr | pU)|

0) —H T GHH A

p—f U,Ej)

.« el = 3, b,((])U,EJ) decomposition for runtime vector 7 = (7;) ;€ NIS! as:

L pj=pi(r) =2 b < exp(¢f7; ")
1. cosT(c-ud)=r



Putting things together

» CDF decomposition C(x) = ¥; Zkﬁjeifxbl((j)Tr [pUIEj)]
* Cgate = (ZLES |F'|.ui)_1 ' (ZjES|F}'| 'u]'rj) 14
Sample (Z]ES|F |,U])

@)
Ly =

tr[/)lleo] I
n -

2 —1 A
\\/I \]l

*Aspu;<e R choosing 17 = 2t Vj gives p; < +/e: £

Cgate X (ZiESlﬁiD_l(ZjESlﬁj'jz) 2 Cgate — 6(/12A_2)

Csample X (Zj€slﬁ}'|)2 2 Csample = 6(77_2)

X



Finite size numerical analysis

« Asymptotic complexity from fixed runtime vector 7 with = thz VieS
« Optimize 7 to minimize Cgates Csampler OF Cgate * Csample for different settings?

* High-dimensional optimization problem, technical contribution: approximate
dimension reduction that allows for efficient classical pre-processing

e Leads to flexible resource trade-offs:

b

A A

# of samples

# of samples

L

# of gates # of gates



Extra: Proof Fourier series lemma

e Rigorous argument via truncated Chebyshev series of rescaled error function:

—~ By —t2
erf(By) = 2w 2 fo et dt = Yy ek T (y)

k

» Fourier series: 0(x) = erf(Bsin(x)) =~ Y ¢, Tk (cos (% — )

using Ti(cos()) = cos(k()) |
_J

;4 _J




Extra: Proof random compiler lemma

e ForH=Y!  a;P;andr € N: e'flt = (eiH“’_l)r =1 +itr 'H+-)"

L L
1+itr 1H = Z p;(1+itr 1p) « Z pleiepl for & = arccos (\/1 + tzr‘z)
=1 =1

* Similarly handle higher order terms — contain Paulis as well

* To sample U, from elHt — Y. b Uk independently sample r unitaries

iHtr~1

Wi, ..., W,. from decomposition of e and implement product

8 A s 9 A

W1 W2 e er




Extra: gDRIFT comparison

[Campbell, PRL (2019)]

e gDRIFT approximates quantum channel
p e elltpe~tHt for g = YL p, P, (normalized)
by sampling r Paulis P, , ..., P, independently with Pr[P;| = p; and putting
V i— eitr‘lPll eitr‘lPlr

e gDRIFT compilation error can only be suppressed by increasing gate count r

e Our random compiler: approximates unitary U = et and compilation error can be

suppressed arbitrarily by simply taking more samples



