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Information science

• Theory of information processing: 
Mathematical foundations in 1940s
• Abstract theory independent of 

implementation

• Question: Also independent 
of underlying physics?

Alan Turing
Claude Shannon



Quantum information science

• Bell’s theorem (1964): Quantum mechanics is 
incompatible with local hidden-variable theories

John Stewart Bell

• Notion of information for microscopical systems described by quantum 
mechanics? Quantum information ≠ classical information

• New research area based on quantum technologies: 
Computing, communication, cryptography, sensing, …
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Theory of quantum information science

• Cluster of Excellence: Matter and Light for Quantum Computing (ML4Q )
• Visiting Reader at Department of Computing Imperial College London
• Industry ties with Amazon Web Services Center for Quantum Computing

• Our focus areas:

1. Mathematical foundations of quantum information
2. Quantum algorithm development



Today: Quantum algorithms



Origins of quantum computing

• First query complexity separation results in 1990s 
• Breakthrough prime factorization (1994):
𝑛-bit integer factorization in quantum complexity 𝑂 𝑛! log 𝑛
versus classical complexity 𝑂 exp 1.9 ⋅ 𝑛

!
" log 𝑛

#
"

Richard Feynman

Peter Shor

• Understanding physics with computers (1981):
“trying to find a computer simulation of physics seems to me to 
be an excellent program to follow out (...) nature is not classical, 
dammit, and if you want to make a simulation of nature, you 
will better make it quantum mechanical, and by golly it is a 
wonderful problem, because it does not look so easy”



Quantum algorithms research

• Steady progress on quantum algorithm development since 1990s, recent 
flurry of activities and results

Charles H. Bennett Gilles Brassard David Deutsch Peter Shor

• Breakthrough prize in physics 2023:
“foundational work in the field of 
quantum information”

• Ultimate goal: Quantify classical-quantum complexity boundary



Classical versus quantum technologies

• Do algorithms based on quantum components, including
• quantum processing units (QPU)
• quantum random access memory (QRAM)

provide computational advantages compared to classical components?

Quantum resources

Classical post-
processing

Quantum data access 
model

Classical pre-
processing Quantum circuit 

• Goal is to identify use cases / areas of 
applications with

• large (super-quadratic) quantum speed-up
• minimal quantum footprint, i.e., use 

classical routines whenever possible



Basics



Classical vs quantum model of computation

• What can be realized within abstract model of quantum mechanics?

• Bloch sphere representation of a two-level system – aka quantum bit –
aka qubit:



Classical vs quantum model of computation

• What can be realized within abstract model of quantum mechanics?

• Classical versus quantum circuit model:

𝑓
{0,1}!

bits

{𝑝 𝑥 }"#$% ↦ {𝑞 𝑦 }&#$!

{0,1}%
bits

function 𝑓

𝑈'
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qubits

unitary 𝑈!

𝑀 {𝑝 𝑥 }"#$+

• Schrödinger time evolution operator 𝑈" = 𝑒#$%$& + measurements  

à



Quantum circuit model

• Decomposition into set of elementary quantum gates, e.g., single qubit 
Pauli 𝑋, 𝑌, 𝑍 and 𝑇 gates, together with two qubit 𝐶𝑁𝑂𝑇 gate

• Quantum complexity = minimal number of elementary quantum gates

𝑈'

𝑀

𝜓%

{𝑝 𝑥 }"#$+

ℂ) ⊗%

qubits

• Where does quantum speed-up come from?
à precise mathematical reason: complex 
numbers allow for constructive interference



Quantum hardware



Quantum hardware

• Nobel prize in physics 2022:
“experiments with entangled photons, 
establishing the violation of Bell inequalities 
and pioneering quantum information science”

Anton ZeillingerJohn ClauserAlain Aspect

• Different technologies: Superconductors, ion 
traps, neutral atoms, photonics, etc.
• Groundbreaking physics experiments with 6 

orders of magnitude improvements in 30 years+
4 IBM superconducting qubits



Current quantum technologies

• Led by quantum industry, 
hundreds of billion dollars scale
• IBM Quantum: (up to 433 qubits)

• Severe restrictions: Qubit count, qubit connectivity, one qubit gates 
(Pauli), two qubit gates (CNOT), read-out errors (measurement), clock 
speed, and more

• Google Quantum: 
(54 qubits)



Quantum algorithm design



Regimes for quantum algorithm design

• Nascent state of quantum technologies gives noisy and intermediate scale 
quantum (NISQ) computing, i.e.,
• Quantum annealers
• Analogue simulators, not universal, not fully programmable
• NISQ digital quantum circuits, inbuilt noise resilience, error mitigation, severe 

scaling limitations, etc.

• Versus what one really wants long-term:

Quantum error-corrected and scaling quantum computer
(roughly two orders of magnitude away)

• Any intermediate regimes of interest?
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Early fault-tolerance characteristics

• Limited number of logical qubits, with limited quantum clock speed from 
error correction overhead
• Price of resources from most expensive to cheap:

1. Number of qubits
2. Depth of quantum circuits
3. Sample complexity
4. Classical pre- and post-processing

• Goal is flexible trade-off between different resources
• Stay with provable worst-case guarantees + add strong heuristic about 

average case performances



Our work on early fault-tolerance
• Hybrid classical-quantum schemes with end-to-end complexity analysis

Quantum resources

Classical post-
processing

Quantum data access 
model

Classical pre-
processing Quantum circuit 

• Resource estimates for comparison with state-of-the-art classical methods



Quantum 
Algorithms Wiki

• Brand new (05/10/2023) – available at arXiv:2310.03011



Example applications



Quantum simulation for scientific computing

Swiss National Supercomputing Centre Annual Report 2022 



Example: Ground state energy 
estimation
Randomized quantum algorithm for statistical phase estimation

Physical Review Letters (2022) with Campbell and Wan
Quantum Information Processing (QIP) 2022



Quantum many body systems
• Consider 𝑛-qubit Hamiltonian

H = ∑'()* 𝛼'𝑃'+ with 𝑃'+ 𝑛-qubit Pauli operator,

i.e., P'+ = P)⊗⋯⊗𝑃+ with 𝑃$ ∈ {𝑋, 𝑌, 𝑍, 1}

• Native example: Ising model on two-dimensional square lattice

𝐻,-$+. = 𝐶 ⋅C
/∈1

𝑍$,/ ⊗𝑍$3),/ + 𝑍$,/ ⊗𝑍$,/3)

• General fermionic or bosonic systems from condensed matter physics and 
computational chemistry can be mapped efficiently to qubits



Problem: Ground state energy estimation
• Given 𝑛-qubit Hamiltonian

H ≔ ∑'()* 𝛼'𝑃' with 𝑃' 𝑛-qubit Paulis

and one-norm 𝜆 ≔ ∑'()* 𝛼' ,	together with efficiently preparable 𝑛-qubit 
ansatz state |𝜓⟩ with overlap

⟨𝜙4|𝜓⟩ ≥ 𝜂 > 0

for true ground state 𝜙4 with energy 𝐸4

• Goal: Compute estimate R𝐸4 with precision R𝐸4 − 𝐸4 ≤ Δ



Early fault-tolerance approach

1. Minimize number of qubits needed – only one ancilla

2. Trade-off gate versus sample complexity
3. Decrease error by solely taking more samples
4. Independent of the number 𝐿 of Pauli terms in 𝐻



Algorithmic result: Quantum phase estimation

• Output R𝐸4 with R𝐸4 − 𝐸4 ≤ Δ with probability 1 − 𝜉 by employing

𝐶-567'8 = R𝑂 𝜂#! = 𝑂 𝜂#$log$ 𝜆Δ#%log 𝜂#% log 𝜉#%log 𝜆Δ#%

quantum circuits on 𝑛 + 1 qubits, each using one copy of |𝜓⟩ and

𝐶.5&8 = R𝑂 𝜆!Δ#! = 𝑂 𝜆$Δ#$log$ 𝜂#%

single-qubit Pauli rotations exp 𝑖𝜃𝑃'

• Note: Ansatz state 𝜂-overlap bottleneck vs classical methods



Basic idea

• Cumulative distribution function 
(CDF) relative to |𝜓⟩ is

C x ≔ 𝑇𝑟 𝜌Π9:

• Evaluate 𝐶(𝑥) via quantum?

• Two algorithmic ingredients:
(A) Hadamard test
(B) Importance sampling

⟨𝜓|Π,-!|𝜓⟩



Workhorse A: Hadamard test

• Input: 𝑛-qubit state |𝜓⟩ together with 𝑛-qubit unitary 𝑈
• Quantum circuit:

• Output is unbiased estimate of ⟨𝜓|𝑈|𝜓⟩ from

𝐺 = 1 ⇒ 𝔼 𝑋 = 𝑅𝑒 𝜓 𝑈 𝜓
𝐺 = 𝑆∗ ⇒ 𝔼 𝑋 = 𝐼𝑚 𝜓 𝑈 𝜓

|𝜓⟩



Workhorse B: Importance sampling

• Estimate linear combination:

∑/ 𝑎/𝑇𝑟 𝜌𝑈/ for unitaries 𝑈/ with 𝑎/ > 0 and normalization 𝐴 ≔ ∑/ 𝑎/

• Sample 𝑗 with probability 𝑎/ ⋅ 𝐴#) and perform Hadamard test on
|𝜓⟩, 𝑈/ :

• Take average of samples, number required is 𝐴!𝜎#! for variance 𝜎 > 0

⇒ estimate ⟨𝜓|𝑈5|𝜓⟩|𝜓⟩



CDF via Fourier series

• Replace Heaviside Θ 𝑥 by finite Fourier series 𝐹 𝑥 ≔ ∑5∈7 ,𝐹5𝑒859

• Approximate CDF:

𝐶 𝑥 ≈ 𝑝 ∗ 𝐹 𝑥 =3
5∈7

,𝐹5𝑒859 ⋅ ⟨𝜓|𝑒8:!;|𝜓⟩

with runtimes 𝑡5 = 𝑗 × normalization
• Hadamard test + importance sampling + Hamiltonian simulation:



FeMoco benchmark – resource trade-offs
• Li et al. FeMoco Hamiltonian with 

152 spin orbitals: 152+1=153 
qubits

• Chemical accuracy Δ = 0.0016
Hartree, one-norm 𝜆 = 1511

• State-of-the-art qubitization

𝐶.5&8 = 3.2 ⋅ 10)4 on 2196 qubits

• Ansatz state 𝜂-overlap bottleneck + 
classical methods scale polynomial!
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Example: Linear algebra on 
classical data
Qubit-efficient randomized quantum algorithms for linear algebra

arXiv:2302.01873 (2023) with McArdle and Wang
Quantum Computing Theory in Practice (QCTIP) 2023
Theory of Quantum Computation, Communication and Cryptography (TQC) 2023



“Early fault-tolerant algorithms for classical data” 

Hardware efficient
&

Provable guarantees

Data comes via 
classical description 
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Quantum algorithms for classical data



Idea I: Parallelize quantum sub-routines

Quantum circuit Quantum circuit Quantum circuits
Classical 

post-
processing

Classical 
pre-

processing

Each                      qubits



Idea II: Classical instead of quantum access
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Quantum data 
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Conclusion



Quantum algorithms for early fault-tolerance

• Use as few qubits and quantum routines as possible, use classical 
methods whenever sufficient
• Early fault-tolerant methods can even be competitive with state-of-the-

art (non-qubit aware) schemes in terms of asymptotic complexities
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Outlook

• Quantum resource counts for applications featuring end-to-end 
complexity analyses, quantum speed-up?
à upcoming popular article DPG Physik Journal (November issue)
• Guiding questions:

• What quantum algorithms do we eventually want to run?
• For what applications is the quantum footprint the smallest to become 

competitive with classical methods?

• 50-100 error corrected qubits could allow for truly insightful experiments

Thank you!



Some references



Paper references to some of our work
• A randomized quantum algorithm for statistical phase estimation

QIP22, Physical Review Letters (2022) with Campbell, Wan

• Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle, Wang

• Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen

• Quantum resources required to block-encode a matrix of classical data
IEEE Transactions on Quantum Engineering (2022) with Clader, Dalzell, Stamatopoulos, Salton, Zeng

• A streamlined quantum algorithm for topological data analysis with 
exponentially fewer qubits
QIP23, arXiv:2209.12887 (2022) with McArdle, Gilyen

• Sparse random Hamiltonians are quantumly easy
QIP23, arXiv:2302.03394 (2023) with Chen, Dalzell, Brandão, Tropp



Extra content ground state energy



Hydrogen chain benchmark – scaling

• For length 𝑁 chain, one-norm estimate 𝜆 ≈ 𝑂 𝑁<.>?

• Our work 𝐶@A:B = ;𝑂 𝑁C.DEΔFC

• Comparison to state-of-the-art qubitization:

A. rigorous 𝐶!"#$ = >𝑂 𝑁%.%'Δ()

B. sparse method 𝐶!"#$ = >𝑂 𝑁*.%Δ()

C. tensor hypercontraction method 𝐶!"#$ = >𝑂 𝑁*.)Δ()

• Extensive properties Δ ∝ 𝑁 interesting for our methods: 𝐶@A:B = ;𝑂 𝑁G.DE



Fourier series lemma (Heaviside function)

• Improved Fourier series approximation of Heaviside function

• Technical contribution:

Gate complexity for precision Δ > 0 from 𝑂 ΔFClogC ΔF< to 𝑂 ΔFC

[Lin & Tong, PRX Quantum (2022)]



Random compiler lemma (Hamiltonian simulation)

• For 𝑒8:; with H = ∑HI<J 𝛼H𝑃H, we give linear combination of unitaries (LCU) 𝑒8:; =

∑K 𝑏K𝑈K such that:

I. 𝜇(𝑟) ≔ ∑K 𝑏K ≤ exp 𝑡C𝑟F<

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈K = 𝑟 controlled single qubit Pauli rotations ∀𝑘

• Gate complexity 𝑟 versus sample complexity exp 𝑡C𝑟F<

• Example: 𝑟 = 2𝑡C à 𝜇 ≤ 𝑒 and 𝐶𝑂𝑆𝑇 𝐶 − 𝑈K = 2𝑡C

• Use this on: 𝐶 𝑥 ≈ ∑5∈7 ,𝐹5𝑒859 ⋅ 𝑇𝑟 𝜌𝑒8:!;



Random compiler for CDF

• CDF 𝐶 𝑥 ≈ ∑5 ,𝐹5𝑒859 ⋅ 𝑇𝑟 𝜌𝑒8:!; becomes 𝐶 𝑥 ≈ ∑5∑K ,𝐹5𝑒859𝑏K
5 𝑇𝑟 𝜌𝑈K

5

• 𝑒8:!; = ∑K 𝑏K
5 𝑈K

5 decomposition for runtime vector 𝑟 = (𝑟5)5∈ ℕ 7 as:

I. 𝜇5 ≔ 𝜇5(𝑟) ≔ ∑K 𝑏K
5 ≤ exp 𝑡5C𝑟5F<

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈K
5 = 𝑟5



Putting things together

• CDF decomposition 𝐶 𝑥 ≈ ∑5∑K ,𝐹5𝑒859𝑏K
5 𝑇𝑟 𝜌𝑈K

5

• 𝐶@A:B = ∑8∈7 | ,𝐹8|𝜇8
F< ⋅ ∑5∈7 ,𝐹5 𝜇5𝑟5

• 𝐶LAMNHB ∝ ∑5∈L ,𝐹5 𝜇5
C

• As 𝜇5 ≤ 𝑒:!
"O!

#$
choosing 𝑟5 = 2𝑡5C ∀𝑗 gives 𝜇5 ≤ 𝑒:

𝐶@A:B ∝ ∑8∈7 ,𝐹8
F< ∑5∈7 ,𝐹5 𝑗C à 𝐶@A:B = ;𝑂 𝜆CΔFC

𝐶LAMNHB ∝ ∑5∈L ,𝐹5
C
à 𝐶LAMNHB = ;𝑂 𝜂FC



Finite size numerical analysis

• Asymptotic complexity from fixed runtime vector 𝑟 with 𝑟5 = 2𝑡5C ∀𝑗 ∈ 𝑆

• Optimize 𝑟 to minimize 𝐶@A:B, 𝐶LAMNHB, or 𝐶@A:B ⋅ 𝐶LAMNHB for different settings?

• High-dimensional optimization problem, technical contribution: approximate 
dimension reduction that allows for efficient classical pre-processing

• Leads to flexible resource trade-offs:



Extra: Proof Fourier series lemma

• Rigorous argument via truncated Chebyshev series of rescaled error function:

erf 𝛽𝑦 = 2𝜋F
$
" ∫G

PQ 𝑒F:"𝑑𝑡 ≈ ∑K 𝑐K𝑇K 𝑦

• Fourier series: Θ 𝑥 ≈ erf 𝛽sin 𝑥 ≈ ∑K 𝑐K𝑇K cos R
C
− 𝑥

using 𝑇K cos ⋅ = cos 𝑘 ⋅



Extra: Proof random compiler lemma

• For H = ∑HI<J 𝛼H𝑃H and 𝑟 ∈ ℕ: 𝑒8;: = 𝑒8;:O#$
O
= 1 + 𝑖𝑡𝑟F<𝐻 +⋯ O

1 + 𝑖𝑡𝑟()𝐻 =H
+,)

-

𝑝+ 1 + 𝑖𝑡𝑟()𝑃+ ∝H
+,)

-

𝑝+𝑒./0& for 𝜃 = arccos 1 + 𝑡*𝑟(*

• Similarly handle higher order terms – contain Paulis as well

• To sample 𝑈K from 𝑒8;: = ∑K 𝑏K𝑈K: independently sample 𝑟 unitaries

𝑊<, … ,𝑊O from decomposition of 𝑒8;:O#$ and implement product



Extra: qDRIFT comparison

• qDRIFT approximates quantum channel

𝜌 ↦ 𝑒8;:𝜌𝑒F8;: for 𝐻 = ∑HI<J 𝑝H𝑃H (normalized)

by sampling 𝑟 Paulis 𝑃H$ , … , 𝑃H% independently with Pr 𝑃H = 𝑝H and putting

V ≔ 𝑒8:O
#$S&$ ⋯𝑒8:O#$S&%

• qDRIFT compilation error can only be suppressed by increasing gate count 𝑟

• Our random compiler: approximates unitary U = 𝑒8;: and compilation error can be 
suppressed arbitrarily by simply taking more samples

[Campbell, PRL (2019)]


