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Quantum information science

* Theory of information processing: Mathematical foundations by
Turing, Shannon, etc.

* Abstract theory independent of underlying physics?

* Physics changes at different length scales (energies), notion of
information for microscopical systems described by quantum physics?

* Deep finding: Quantum information # classical information!

* Led to whole new research area of quantum technologies and
guantum computing
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Theory of qguantum information science

 Our focus areas:

1. Mathematical foundations of quantum information
2. Quantum algorithm development

* Visiting Reader at Department of Computing Imperial College London
* Industry ties with Amazon Web Services Center for Quantum Computing

AAAAAAAAAAAAAA o'e MATTER AND LIGHT FOR

J ARA | sTiTure Imperial College European M L4@
INFORMATION London -’.:erc Research S5
o o E PS RC .':-{{E,:l Council QUANTUM COMPUTING




This talk: Quantum algorithm
development



Quantum algorithms

* Early ideas by Feynman and others on quantum simulation in the 1980s
* Query complexity separation results in the circuit model in the 1990s
* Peter Shor (1999) breakthrough result:

n-bit integer factorization in quantum complexity O(n?logn) versus the
2
classical complexity O (exp (1.9 -n3 (log n)E))

 Steady progress on quantum algorithm development since, recent flurry
of activities and results

e Goal: Quantify classical-quantum complexity boundary



Classical versus quantum technologies

* Basic question from complexity-theoretic viewpoint:

Do algorithms based on quantum components, such as quantum
processing units (QPU) / quantum memory / quantum random access
memory (QRAM) etc., provide computational advantages compared to
leading methods based on classical components?

* Goal is to identify use cases / areas of applications with

* large (super-quadratic) quantum speed-up
* minimal quantum footprint, i.e., use classical whenever possible



Regimes for quantum algorithm design

* Nascent state of quantum technologies gives noisy and intermediate scale
guantum (NISQ) computing, i.e.,

* NISQ analogue simulators, not universal, not fully programmable

* NISQ digital quantum circuits, inbuilt noise resilience, error mitigation, severe
scaling limitations, etc.

* For NISQ regime rigorous guarantees and scaling questions are challenging
* In contrast, fully qguantum error-corrected and scaling quantum computer

* Any intermediate regimes of interest?



Early fault-tolerant regime
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Early fault-tolerance characteristics

 Limited number of logical qubits, slow quantum clock speed from error
correction overhead

* Price of resources from most expensive to cheap:
1. Number of qubits
2. Depth of quantum circuits
3. Sample complexity
4. Classical pre- and post-processing

e Goal is flexible trade-off between different resources

e Stay with provable worst-case guarantees + add strong heuristic about
average case performances



Our work on early fault-tolerance

* Hybrid classical-quantum schemes with end-to-end complexity analysis

Classical post-
processing

Classical pre-
processing

Quantum data access
model

Quantum resources

e Resource estimates for comparison with state-of-the-art classical methods



Example |: Ground state energy
estimation

Randomized quantum algorithm for statistical phase estimation
QIP21, Physical Review Letters (2022) with Campbell and Wan



Problem: Ground state energy estimation

e Given n-qubit Hamiltonian
H := Y7_, a;P; with P, n-qubit Paulis

and one-norm A = lellall, together with efficiently preparable n-qubit
ansatz state p with overlap

(Polpldpe) =1 >0

for ground state |y ){(po| with energy E,

e Goal: Compute estimate E, with precision ‘E"O — Eo‘ <A



Early fault-tolerance approach

1. Minimize number of qubits needed — only one ancilla

0) —— HAD T G Hap A 0) —— HAD T G Hap A
p —+ Uj Us

p —+

2. Trade-off gate versus sample complexity
3. Decrease error by solely taking more samples

Independent of the number L of Pauli terms in H — instead, depending
onone-normA < L



Algorithmic result: Quantum phase estimation

e Output E, with ‘E"O — EO‘ < A with probability 1 — ¢ by employing

Csample — 6 (7’] _2) [= 0 (77‘210g2 (AA‘llog(n‘1))log(€‘1log(AA‘1)))]

quantum circuits on n + 1 qubits, each using one copy of p and

C

gate — G(AZA_Z) |= 0(2247%10g?(n™h))]

single-qubit Pauli rotations exp(i0P;)

* Plus: Clifford gates — generated by CNOT, H, and S (Pauli gates)



Complexity quantum phase estimation

* n qubit Hamiltonian, n + 1 qubits with quantum complexities

independent of L:

C

gate — 6(/12A_2) for Csample — 5(77_2)

* Randomized algorithm with classical pre- and post-processing

 Comparison state-of-the-art qubitization based approach:

Gate complexity O(v/LAA™Y) for O(VL) qubits = total O(LAA™Y)



Basic idea

e Cumulative distribution function
(CDF) relative to p is

C(x) = Tr|pls,]

* Evaluate C(x) from quantum
routine?

* Task of eigenvalue thresholding

* Give ground state energy
estimate E, via binary search




Workhorse A: Hadamard test

* Input: n-qubit state p together with n-qubit unitary U
* Circuit:

|0) —— HAD T G —{HAD AN {+1

p —+ U

 Output: unbiased estimate of Tr[pU] from

G=I = E[X]=mRe(tz[pU])
G=5" = E[X]=Im(r[pU])

if |0)
if [1)



Workhorse B: Importance sampling

* Estimate linear combination Zj ajTr[pUj] for unitaries U; with a; > 0 and

normalization A := 2, ; a;

* Sample j with probability a; - A~'and perform Hadamard test on (p, Uj):

|0) —— HAD

G

HAD

p —+

]

A

= estimate of tr|pU;]

* Take average of samples, number required is [A%c 2] for variance ¢ > 0

* Expected gate complexity becomes A~ - Z]- ajCOST(C — Uj)



Towards guantum implementation of CDF

* Normalize Hamiltonian with ¢ - ||H||s < c - A to put spectrum in [—%, +§]

* CDF C(x) = Tr|pll.,] = (O * p)(x) from convolution with Heaviside 0(x):

= X




CDF via Fourier series

* Replace Heaviside ©(x) by finite Fourier series F(x) = ). jes F}-eijx
* Approximate CDF:
CO) ~ (p+ () = ) Frel* - Tr{pelts]

JES
with runtimes t; = j X normalization

 Hadamard test + importance sampling + Hamiltonian simulation:

0) ——{HAD I G — HAD A

p / 6itj H




Hadamard test on Fourier series

0) —

HAD

T

G

HAD

p —+

€

it; H

A

C(x) =~ z Fie* . Tr[pe'tif]
7S

* Implement Hamiltonian simulation unitary U; = e'til for H = Y a P

* Independent of L? Novel random compiler lemma for Hamiltonian simulation:

3

P ﬁ/— eil“,' H

_é} ,

P A

Versus previous random qDRIFT compiler:
[Campbell, PRL (2019)]



FeMoco benchmark — resource trade-offs

Li et al. FeMoco Hamiltonian with 152
spin orbitals: 152+1=153 qubits

Chemical accuracy A = 0.0016 Hartree, —~
one-norm A = 1511

2000

Gate complexity in single-qubit Pauli
rotations e o
Comparison: Qubitization with heuristic
truncations

Csample
\®]
S
(e)

|
> 1000
N—" -

k=
1op; = 500}

e =0.3
e =0.2
e =0.1

Cgate = 3.2 - 10° on 2196 qubits



Hydrogen chain benchmark — scaling

For length N chain, one-norm estimate 1 ~ O(N13%)
Our work Cygee = O(N#°%A72)

Qubitization based approaches:
A. rigorous Cygee = O(N33*A71)
B. sparse method Cyqrp = O(N?3A~1)

C. tensor hypercontraction method Cyqee = O(N*1A™Y)

Extensive properties A oc N interesting for our methods: Cyqr = O (N %)



Example |l: Linear algebra on
classical data

Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle and Wang
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Quantum algorithms for classical data

Classical Classical
pre- post-
processing processing

Quantum data
access model

\ J
Y

Quantum resources




Example task: Linear system of equations

* Task: Given NXN complex matrix A and length N vector b, sample
properties of length N solution vector x = A~ 1b

* Classical algorithms:

* Gaussian elimination O(N%) with w < 2.373

 Randomized O (SKF(A) log—) for e-approximation with s = row sparsity and
condition number kz(4) = [|A]|| - ||A7Y]

kg (A)K2(A)
82

* Dequantized O ( ) for e-approximation with k(4) = ||A|| - ||A7!]]

* Disclaimer: Condition number dependence k(A4), kz(A)? Input model?



Quantum linear system solver

Classical Classical
Pre- post-
processing processing

Using QRAM:

I O(N?) qubits
|

: O(log(N)) gate
| depth each call

Block encoding
/ of A




Quantum linear algebra setting

* Task (i): Given NXN complex matrix 4, a function f, and preparations for

|p), [1), sample from
(WY|f(A)|p)

* Task (ii): Given NXN complex matrix A, a function f, a preparation for
|®), and an observable O, sample from

Trif(A)leNelf(A4) 0]

e Linear system solver corresponds to function f(x) = x~1

* Other functions of interest: exp(ix), exp(—x*), exp(x), 0(x), ---



|dea I: Parallelize quantum sub-routines

Classical |
ore- Classical
processing post—.
processing

L

\ J

Y

Each O(log(N)) qubits



|dea II: Classical instead of quantum access

Classical
pre-
processing

L Quantum data

access model

Classical
post-
processing

o

Our work

Classical
data access
model

Classical
pre-
processing

%

Classical
post-
processing




Classical access model

* Focus on N XN matrices with given Pauli decomposition 4 = Y7_, a,P,
and function some function f, sample properties of f(A)

* Classical access model = ability to sample from {a;}; and known Pauli
weight 1(4) = ¥la

* Example: A = Hamiltonian NB: A(A) < L < N2 but often even A(A) = O(log N)

* Use Hadamard test and importance sampling, just now with Fourier
series of function f'!

P S sl AL A . A




Quantum linear algebra result

Fourier approximation of f Pauli decomposition of A
|f(z) —s(e,Da,z)| <e, Vzx€Da {al}l S-t-AZZlL a; b
L
s(e,Da,x) =2 pep (e, Da)exp (itk(e, Da)z) A= Zl ;|

Sampling Alg.

(i) sample (Y [f (4)|¢)
(ii) sample Tr[f (A)|¢p{¢p|f (A)*0]

Given |¢), |Y), 0




Quantum linear algebra result

Fourier approximation of f Pauli decomposition of A
|f(z) — s(e,Da,z)| <e, VYzeDy {a;}; sit. A=S" ;P
L
s(e,Da,x) = 3 e p an(e; Da) exp (itr(e, Da)) A=D20 lai

< MNgates —>

Sampling Alg.

1.

A

Necircuits



Complexities guantum linear system solver

 Task (i): Given NXN complex matrix A = ZZL=1 a; P; in Pauli input model,
and preparations for |¢), |b), sample from (¢p|A~1|b)

* Only use log N + 2 qubits in total!

* Flexible trade-off possible, one choice

Ngates = 6(/12 (4) - ||A—1||2)’ Ncircuits

Classica
data access

model

~

=0

1A~11?

) NB: often A(A) = O(log N)




Example Ill: Quantum state
preparation

Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen



Quantum state preparation problem

* Classical data not from table but generated via functions

* Given the function f: [a, b] = R, prepare the n-qubit quantum state
211

) = Z F@lx)

x(b a)

and normalization Ny = /Y ; f (%)

* Important sub-routine in a varlety of quantum algorithms, for
different functions of interest

with uniform grid x := a +

* Minimize number of ancilla qubits and quantum gates



Standard approach(es)

* Amplitude oracle |x)|0) = |x)|f (k)) that prepares g-bit
approximation of the values f(x)

* Implemented via reversible computation, using piecewise polynomial
approximation of the function f(x)

* Alternatively, reading values stored in a quantum memory

* Downsides:
* Handcrafted for every function + discretization of values of function
e Large ancilla cost — not suited for early fault-tolerant regime

* Other approaches: Grover-Rudolph, adiabatic, repeat until success,
matrix product states, etc. (similar bottlenecks)



Quantum eigenvalue transformation (QET)

* Apply functions to the eigenvalues of a Hermitian matrix

* An (a, m)-block encoding of an n-qubit Hermitian A is an (n + m)-
qubit unitary U, with

A=a- ((01" ® 1,)U,(|0)®™ ® 1,,)
e Base functions are even degree d polynomials
- QET circuit output is block encoding U ,a of the matrix A%

* Implementation cost:

gapplications of U and U™ each + O(d) other gates in between



QET continued

* Example circuit for even degree d polynomial and m = 1:

az) — H P R.(601) P B R.(02) P
ai) — i 1: T \f \f )
|£13>'n 7L va UA Ua B

* Efficient classical pre-computation of angle set {0, 0,,--,0,}

* Odd polynomials, general functions via polynomial approximation,
complexity given by degree of polynomial



Main idea: State preparation via QET

la1) 4Ry (2" ") HRy (2> ") -+ qRy(-2°)HX

* Create low-cost block encoding
of 4 == Y2 1 sin( %) |x)(x| via

|z1)

|z2) .

= (1,1) block encoding

%) o

Ry(a) = exp(—iaY)

* |dea: Applying QET, convert this into block encoding of Zzn_l f(0)|x)(x]
using polynomial approximation off((b — a)arcsin(-) + a)

* Run circuits on input [x; ==+ x,) ® |0 +-- 0}, = |+)®"|0 --- 0), and use
amplitude amplification to maximize probability of |[¥f) @ [0 - 0),



Quantum complexities

* For sufficiently smooth functions f, we can prepare a quantum state
|W#) that is e-close in trace distance to ['Ff) using

5 (nlog[(:,]_l)) gates +4 ancilla QUbitS with discretized L,-norm filling-fraction (N := 2")
% Nl _ ([COREeE N e irraz _. pl)

(-0 ey [0l e

* Show analytical results via minimax polynomial

¥

* In practice use instead (works even better):
* Remez approximation or even just Local Taylor series
e L,-approximation on grid



Analytical performance: Gaussians
* Example function fz(x) = exp(—gxz)

*Fore € (O, %) and 0 < f < 2™ we can prepare the [—1,1] uniform
grid Gaussian state on n qubits up to e-precision with gate complexity

5
0 (n-logl@) + 3 ancilla qubits
for B = log(2).

* Note: All other approaches use hundreds of ancilla qubits



Numerical benchmarking: tanh(x)

* Example function tanh(x) in the range x € [0,1] on n = 32 gives

# Ancilla :
Method qubits # 'Toftoli gates
QET (this work) 3 9.7 x 10*
Black-box state 9216 6.9 % 10%

amplitude oracle
Grover-Rudolph
amplitude oracle

> 959 > 2.0 x 10°

* Cost are lower bounds minimizing gate count, based on state-of-the-
art amplitude oracles (which could potentially be improved)

* Other methods give even higher costs



Conclusion / Outlook



Quantum algorithms for early fault-tolerance

* Motto: Classical whenever possible, use as few qubits as possible

* Finding: Early fault-tolerant methods can even be competitive with state-
of-the-art (non-qubit aware) schemes in terms of asymptotic complexities

* Needed: More quantum resource counts for different applications, end-
to-end complexity analyses

* Guiding questions:
* What quantum algorithms do we eventually want to run?

* For what applications is the quantum footprint the smallest to become
competitive with classical methods?

Thank youl!



Some references



Paper references of our work

* A randomized quantum algorithm for statistical phase estimation
QIP21, Physical Review Letters (2022) with Campbell, Wan

* Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle, Wang

* Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen

* Quantum resources required to block-encode a matrix of classical data
IEEE Transactions on Quantum Engineering (2022) with Clader, Dalzell, Stamatopoulos, Salton, Zeng

* A streamlined quantum algorithm for topological data analysis with

exponentially fewer qubits
QIP22, arXiv:2209.12887 (2022) with McArdle, Gilyen

* Sparse random Hamiltonians are quantumly easy
QIP22, arXiv:2302.03394 (2023) with Chen, Dalzell, Brandao, Tropp



Extra content ground state energy



Fourier series lemma (Heaviside function)

C(z) C(x)
% A
| iy ; Ity
I |

; —
tr[pll<g,] - ; tr[pll<f,]
7 - i 1N -

I » -\\/A\Jl
Ey Ey

* Improved Fourier series approximation of Heaviside function

 Technical contribution:

Gate complexity for precision A > 0 from 0(A™2log?(A™1)) to 0(A™2)

[Lin & Tong, PRX Quantum (2022)]

I



Random compiler lemma (Hamiltonian simulation)

* For e with H = Y I, a;P;, we give linear combination of unitaries (LCU) et =

Y. bi U such that:

|0) ——HAD T G HAD A=
L u()=Xpbe <exp(t’r™) p— U
II. COST(C — U) = r controlled single qubit Pauli rotations Vk

e Gate complexity 7 versus sample complexity exp(t?r 1)
e Example: 7 = 2t? 2 u < +/e and COST(C — U;,) = 2t*

* Use thison: C(x) = X jes Fjeijx ' Tr[peitfH]



Random compiler for CDF

+ CDF C(x) ~ X Fje* - Tr[pe'i"] becomes C(x) ~ X; Xx Fre b Tr | pU)|

0) —H T GHH A

p—f U,Ej)

.« el = 3, b,((])U,EJ) decomposition for runtime vector 7 = (7;) ;€ NIS! as:

L pj=pi(r) =2 b < exp(¢f7; ")
1. cosT(c-ud)=r



Putting things together

* CDF decomposition C(x) = Zj Dk Fjeiijl(cj)Tr [pU,Ej)]
) - €
* Cgate = (ZLES |F'|#i) K (ZjES|FJ'| '“J'rj) 4
sample (Z]ES|F |'u1)

tr[/)lleo] n
n 4

2—1

*Aspu;<e R choosing 17 = 2t Vj gives p; < +/e: E

Cgate X (ZiESlﬁiD_l(ZjESlﬁj'jz) 2 Cgate — 6(/12A_2)

Csample X (Zj€slﬁ}'|)2 2 Csample = 6(77_2)

x



Finite size numerical analysis

« Asymptotic complexity from fixed runtime vector 7 with = thz VieS
« Optimize 7 to minimize Cgates Csampler OF Cgate * Csample for different settings?

* High-dimensional optimization problem, technical contribution: approximate
dimension reduction that allows for efficient classical pre-processing

e Leads to flexible resource trade-offs:

b

A A

# of samples

# of samples

# of gates # of gates



Extra: Proof Fourier series lemma

e Rigorous argument via truncated Chebyshev series of rescaled error function:

—~ By —t2
erf(By) = 2w 2 fo et dt = Yy ek T (y)

k

» Fourier series: 0(x) = erf(Bsin(x)) =~ Y ¢, Tk (cos (% — )

using Ti(cos()) = cos(k()) |
_J

;4 _J




Extra: Proof random compiler lemma

e ForH=Y!  a;P;andr € N: e'flt = (eiH“’_l)r =1 +itr 'H+-)"

L L
1+itr 1H = Z p;(1+itr 1p) « Z pleiepl for & = arccos (\/1 + tzr‘z)
=1 =1

* Similarly handle higher order terms — contain Paulis as well

* To sample U, from elHt — Y. b Uk independently sample r unitaries

iHtr~1

Wi, ..., W,. from decomposition of e and implement product

8 A s 8 A

W1 W2 e er




Extra: gDRIFT comparison

[Campbell, PRL (2019)]

e gDRIFT approximates quantum channel
p e elltpe~tHt for g = YL p, P, (normalized)
by sampling r Paulis P, , ..., P, independently with Pr[P;| = p; and putting
V i— eitr‘lPll eitr‘lPlr

e gDRIFT compilation error can only be suppressed by increasing gate count r

e Our random compiler: approximates unitary U = et and compilation error can be

suppressed arbitrarily by simply taking more samples



Extra content linear algebra



Sampling algorithm for (i)

s(A) ~ f(A) —  Decompose into linear combination of strings of gates composed of N 44t gates

For m = 1,2, ..., Neireuits

Sample one string of gates : ( ‘e )

TTETT T T

) AHHF-
Run circuit, obtain single measurement Om,
statistic

Multiply 0,,, by “weight” of linear combination. Record.

Average overm —> Get answer~ (W S(A) |¢> ~ <¢| f(A) |¢>

= Pauli gate +
Pauli rotation



Sampling algorithm for (ii

For m = 1,2, ..., Neireuits

Sample two strings of gates ( ), )

0) {7 . “Tmo

W>*A | ... - ...

—0
—0

Run circuit, obtain single measurement Om,
statistic

Multiply 0,,, by “weight” of linear combination. Record.

Average overm —> Getanswer =~ (1| s(A)TOs(A) |¢) ~ (| fF(A)TOf(A) |¥)



Linear Systems

Given /N x N matrix A and state \[;) with probability at least1 — 0
prepare ()| A~ |b)
prepare (b| (A~1)TOA~1 |b)

» Qubit count: log(N) + 1 (Hermitian), log(IN') + 2 (general)

 Number of quantum circuits:

~ 2 ~ 4
Necircuits = O (log (%) ||Z||2 5}2) y O (log (%) ||Z||4 8%)

 Number of (non-Clifford) gatesn ggtes = O ()‘ZHJ’Z% log2(1/5)>



Extra content state preparation



Main result complexities

* Discretized L,-norm filling-fraction (N := 2") as

(b—a) a) 2 2
N e F €] If( ¢)|“dx

_. ploo]
J(b @)1 Fra J(b—a>|f|max K

f

* Theorem I: Given a degree ds polynomial approximation f of f, *) we
can prepare a quantum state [¥¢) that is e-close in trace dlstance to

|Wr) using O (;d‘s) gates + 4 ancilla qubits, for § = ¢ mln{T N] Tf[N]}.
7
f(x)

|f lmax

() when f(+) applied to sin (%) approximates to Ly-erroron |a, b]



Main result complexities simplified

* Theorem ll: For sufficiently smooth functions f,(*)we can prepare a
quantum state [¥¢) that is e-close in trace distance to |¥f) using

7N
7

~ -1
0 ("log(e )) gates + 4 ancilla qubits.
(*) need Ly-approximation 6 « exp(—dgs) for degree ds polynomial
* Show analytical results via minimax polynomial

* In practice use instead (works even better):
* Remez approximation or even just Local Taylor series
* L,-approximation on grid



Complexity comparison literature

# Non-Clifford | # AnFllla Rigorous Function
gates qubits |error bounds
QET (this work) (9( ngs]) 4 / Polynomlgl/ F(?urler
g approximation
Black-box g2d. -
amplitude oracle O ( F}N ] ) O(gede) 4 General
Grover-Rudolph 2 3 x Efficiently integrable
amplitude oracle O (nge de) O(gede) / probability distribution
Adiabatic g2d. -
amplitude oracle O ( ( ;J[CN ])462 ) O(ged.) 4 General
Matrix product state O(n) 0 X Matrix product state

d = 2 approximation

Note: g.-bit amplitude oracles with degree cig piecewise polynomial approximation (c?g #* d. in general)



Outlook

* Introduced versatile method for preparing a quantum state whose
amplitudes are given by some known function

* Based on the QET, orders of magnitude savings in ancilla qubits
* Needed: More detailed practical resource estimates, more functions

* Open questions:

» Example square root function v/x for ¥ € [0,1], non-differentiable at ¥ = 0
—> use VX + a instead?

e Multivariate functions via multivariate QET?

Thank you.



Algorithm: Setup

* Treat special case: a = —1,b = 1, with function f(x) = f(—x)
* Goal: Prepare the n-qubit quantum state

) = 5 ZeLE, F@0) with £ = 3 and Ny = 3 f(@)

1. Start W|th block encoding of A = ) 7 /2 N/2 sm(%x)|x)(x|

2. QET to convert into block encoding of Zx=—N1/2 [0 |[x) x|

3 0 (1/Tf[N]) rounds of exact amplitude amplification (extra ancilla)

* Need to start with (extensive) classical pre-processing!



Algorithm: Quantum circuits

|a1>,r_;%;(2_1_2)__ ;{y_(QS_Z)___ ) i};yz_;o; 1, 1.Usi, block encoding
Iw1>: ] | circuit
|’£2>: . :
I |
N |
| |
|a7n>|_ _______________ o ——— — |
R N o o . i
laz), —{H i R.(6:) i j R.(62) L 2. Uf block encoding
|a1) — o ; o [ circuit
|.’L'>/n,|7£ sin Usin sin N |
== - - - _ _ - - _ - - _ _ _ == _ _l
0)as Ry (9) I Ry (=9) T By(9)] - 3 Amplitude amplification
00 aiag / ... . .
00) - ;H@’” | Uf Ul H®”lH®” 12N (exact) circuit




Algorithm: Classical pre-computation

* Compute polynomial A(y) such that

1, 1 yE[—l,l]
|h(y )|maX l'<1and h(sin(y)) — f(yf = <0
FORax

leading to approximation f(x) = h(sin(x))

(Remez algorithm / local Taylor series / L,-approximation on grid / ...)

* Compute discretized L,-norm filling-fraction Tf[N] ~ Tf[oo] of f(x)

(choose depending on how large N = 2™ is)

* Compute QET angle set {64, 8,, -, 08} of polynomial f(x)

(analytically good Haah method or numerically good Dong et al. method)



Extension: Non-smooth functions

* First approach: Use coherent inequality test with flag qubit for
piecewise QET polynomial implementation

—> for k discontinuities this requires (k + n) ancilla qubits and 2kn
Toffoli gates for the inequality comparison

* Second approach: Example triangle function for x € [0,1]

(

z 0<z<1/3 z 0<z<3
f(Z) = {l(l— ) 1/§<;< | insteaduse  f(Z) = { Unspecified 5 <T<2
2 - i(i-7) 2<z<]

- use coherent inequality test to flip for x > % and in the end reverse
this inequality check



Extension: Fourier based QET

* Block-encoding of A is replaced by controlled time evolution
V(4) = |010] ® 1 + |1)(1]| & exp(iAt)
* Fourier-based QET uses calls to V(A), together with single-qubit-
rotations, to apply a function f(-) in Fourier series form to A
* We can implement V (A) for diagonal A = ), X|x){(x| usingn
controlled Z-rotations

* Example with compact Fourier series: Cycloid function
> n = 32 for x¥ € [0,27], gives 7.35%10° Toffoli gates

+ 3 ancillas qubits

From wikipedia



