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Quantum information science

• Theory of information processing: Mathematical foundations by 
Turing, Shannon, etc.
• Abstract theory independent of underlying physics?
• Physics changes at different length scales (energies), notion of 

information for microscopical systems described by quantum physics?
• Deep finding: Quantum information ≠ classical information!
• Led to whole new research area of quantum technologies and 

quantum computing
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Theory of quantum information science

• Visiting Reader at Department of Computing Imperial College London
• Industry ties with Amazon Web Services Center for Quantum Computing

• Our focus areas:

1. Mathematical foundations of quantum information
2. Quantum algorithm development



This talk: Quantum algorithm 
development



Quantum algorithms

• Early ideas by Feynman and others on quantum simulation in the 1980s
• Query complexity separation results in the circuit model in the 1990s 
• Peter Shor (1999) breakthrough result:
𝑛-bit integer factorization in quantum complexity 𝑂 𝑛! log 𝑛  versus the 
classical complexity 𝑂 exp 1.9 ⋅ 𝑛

!
" log 𝑛

#
"

• Steady progress on quantum algorithm development since, recent flurry 
of activities and results
• Goal: Quantify classical-quantum complexity boundary



Classical versus quantum technologies

• Basic question from complexity-theoretic viewpoint:

Do algorithms based on quantum components, such as quantum 
processing units (QPU) / quantum memory / quantum random access 
memory (QRAM) etc., provide computational advantages compared to 
leading methods based on classical components?

• Goal is to identify use cases / areas of applications with
• large (super-quadratic) quantum speed-up
• minimal quantum footprint, i.e., use classical whenever possible



Regimes for quantum algorithm design

• Nascent state of quantum technologies gives noisy and intermediate scale 
quantum (NISQ) computing, i.e.,

• NISQ analogue simulators, not universal, not fully programmable
• NISQ digital quantum circuits, inbuilt noise resilience, error mitigation, severe 

scaling limitations, etc.

• For NISQ regime rigorous guarantees and scaling questions are challenging

• In contrast, fully quantum error-corrected and scaling quantum computer

• Any intermediate regimes of interest?
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Early fault-tolerance characteristics

• Limited number of logical qubits, slow quantum clock speed from error 
correction overhead
• Price of resources from most expensive to cheap:

1. Number of qubits
2. Depth of quantum circuits
3. Sample complexity
4. Classical pre- and post-processing

• Goal is flexible trade-off between different resources
• Stay with provable worst-case guarantees + add strong heuristic about 

average case performances



Our work on early fault-tolerance
• Hybrid classical-quantum schemes with end-to-end complexity analysis

Quantum resources

Classical post-
processing

Quantum data access 
model

Classical pre-
processing Quantum circuit 

• Resource estimates for comparison with state-of-the-art classical methods



Example I: Ground state energy 
estimation
Randomized quantum algorithm for statistical phase estimation
QIP21, Physical Review Letters (2022) with Campbell and Wan



Problem: Ground state energy estimation
• Given 𝑛-qubit Hamiltonian

H ≔ ∑"#$% 𝛼"𝑃" 	with 𝑃"  𝑛-qubit Paulis

and one-norm 𝜆 ≔ ∑"#$% 𝛼" ,	together with efficiently preparable 𝑛-qubit 
ansatz state 𝜌 with overlap

⟨𝜙& 𝜌 𝜙&⟩ ≥ 𝜂 > 0

for ground state 𝜙& ⟨𝜙&| with energy 𝐸&

• Goal: Compute estimate @𝐸& with precision @𝐸& − 𝐸& ≤ Δ



Early fault-tolerance approach

1. Minimize number of qubits needed – only one ancilla

2. Trade-off gate versus sample complexity
3. Decrease error by solely taking more samples
4. Independent of	the number 𝐿 of Pauli terms in 𝐻 – instead, depending 

on one-norm 𝜆 ≤ 𝐿



Algorithmic result: Quantum phase estimation

• Output @𝐸& with @𝐸& − 𝐸& ≤ Δ with probability 1 − 𝜉 by employing

𝐶'()*"+ = @𝑂 𝜂,! = 𝑂 𝜂!"log" 𝜆Δ!#log 𝜂!# log 𝜉!#log 𝜆Δ!#

   quantum circuits on 𝑛 + 1 qubits, each using one copy of 𝜌 and

𝐶-(.+ = @𝑂 𝜆!Δ,! = 𝑂 𝜆"Δ!"log" 𝜂!#

   single-qubit Pauli rotations exp 𝑖𝜃𝑃"

• Plus: Clifford gates – generated by CNOT, H, and S (Pauli gates)



Complexity quantum phase estimation

• 𝑛 qubit Hamiltonian, 𝑛 + 1 qubits with quantum complexities 

independent of 𝐿:

𝐶-(.+ = @𝑂 𝜆!Δ,!  for 𝐶'()*"+ = @𝑂 𝜂,!

• Randomized algorithm with classical pre- and post-processing

• Comparison state-of-the-art qubitization based approach:

     Gate complexity @𝑂 𝐿𝜆Δ,$  for @𝑂 𝐿  qubits à total @𝑂 𝐿𝜆Δ,$



Basic idea

• Cumulative distribution function 
(CDF) relative to 𝜌 is

C x ≔ 𝑇𝑟 𝜌Π/0
• Evaluate 𝐶(𝑥) from quantum 

routine?
• Task of eigenvalue thresholding
• Give ground state energy 

estimate @𝐸& via binary search



Workhorse A: Hadamard test

• Input: 𝑛-qubit state 𝜌 together with 𝑛-qubit unitary 𝑈
• Circuit:

• Output: unbiased estimate of 𝑇𝑟 𝜌𝑈  from



Workhorse B: Importance sampling

• Estimate linear combination ∑! 𝑎!𝑇𝑟 𝜌𝑈!  for unitaries 𝑈!	with 𝑎! > 0 and 
normalization 𝐴 ≔ ∑! 𝑎!
• Sample 𝑗 with probability 𝑎! ⋅ 𝐴"#and perform Hadamard test on 𝜌, 𝑈! :

• Take average of samples, number required is 𝐴$𝜎"$  for variance 𝜎 > 0
• Expected gate complexity becomes 𝐴"# ⋅ ∑! 𝑎!𝐶𝑂𝑆𝑇 𝐶 − 𝑈!



Towards quantum implementation of CDF

• Normalize Hamiltonian with c ⋅ ||𝐻||% ≤ 𝑐 ⋅ 𝜆 to put spectrum in − &
$
, + &

$

• CDF 𝐶 𝑥 ≡ 𝑇𝑟 𝜌Π'( = Θ ∗ 𝑝 𝑥  from convolution with Heaviside Θ(𝑥):



CDF via Fourier series

• Replace Heaviside Θ 𝑥  by finite Fourier series 𝐹 𝑥 ≔ ∑!∈* J𝐹!𝑒+!(

• Approximate CDF:

𝐶 𝑥 ≈ 𝑝 ∗ 𝐹 𝑥 =M
!∈*

J𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-

with runtimes 𝑡! = 𝑗	×	normalization
• Hadamard test + importance sampling + Hamiltonian simulation:



Hadamard test on Fourier series

𝐶 𝑥 ≈M
!∈*

J𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-

• Implement Hamiltonian simulation unitary U. = 𝑒+,!- for H = ∑/0#1 𝛼/𝑃/

• Independent of 𝐿? Novel random compiler lemma for Hamiltonian simulation:

   
Versus previous random qDRIFT compiler:

[Campbell, PRL (2019)]



FeMoco benchmark – resource trade-offs
• Li et al. FeMoco Hamiltonian with 152 

spin orbitals: 152+1=153 qubits
• Chemical accuracy Δ = 0.0016 Hartree, 

one-norm 𝜆 = 1511
• Gate complexity in single-qubit Pauli 

rotations 𝑒+23"

• Comparison: Qubitization with heuristic 
truncations

     𝐶45,6 = 3.2 ⋅ 10#7 on 2196 qubits
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Hydrogen chain benchmark – scaling

• For length 𝑁 chain, one-norm estimate 𝜆 ≈ 𝑂 𝑁#.9:

• Our work 𝐶45,6 = ]𝑂 𝑁$.;<Δ"$

• Qubitization based approaches:

A. rigorous 𝐶!"#$ = 3𝑂 𝑁%.%'Δ()

B. sparse method 𝐶!"#$ = 3𝑂 𝑁*.%Δ()

C. tensor hypercontraction method 𝐶!"#$ = 3𝑂 𝑁*.)Δ()

• Extensive properties Δ ∝ 𝑁 interesting for our methods: 𝐶45,6 = ]𝑂 𝑁7.;<



Example II: Linear algebra on 
classical data
Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle and Wang



“Early fault-tolerant algorithms for classical data” 

Hardware efficient
&

Provable guarantees

Data comes via 
classical description 
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Quantum algorithms for classical data



Example task: Linear system of equations

• Task: Given 𝑁×𝑁 complex matrix 𝐴 and length 𝑁 vector 𝑏, sample 
properties of length 𝑁 solution vector 𝑥 = 𝐴,$𝑏
• Classical algorithms:

• Gaussian elimination 𝑂 𝑁=  with 𝜔 < 2.373

• Randomized 𝑂 𝑠𝜅> 𝐴 log #?  for 𝜀-approximation with 𝑠 = row sparsity and 
condition number 𝜅> 𝐴 = ||𝐴||> ⋅ ||𝐴"#||

• Dequantized ]𝑂 @#
$ A @% A

?%
	for 𝜀-approximation with 𝜅 𝐴 = ||𝐴|| ⋅ ||𝐴"#||

• Disclaimer: Condition number dependence 𝜅 𝐴 , 𝜅7 𝐴 ? Input model?
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Quantum linear algebra setting

• Task (i): Given 𝑁×𝑁 complex matrix 𝐴, a function 𝑓, and preparations for 
𝜙 , 𝜓 , sample from

⟨𝜓|𝑓 𝐴 |𝜙⟩
• Task (ii): Given 𝑁×𝑁 complex matrix 𝐴, a function 𝑓, a preparation for 
|𝜙⟩, and an observable 𝑂, sample from

𝑇𝑟 𝑓 𝐴 𝜙 𝜙 𝑓 𝐴 ∗𝑂
• Linear system solver corresponds to function 𝑓 𝑥 = 𝑥,$

• Other functions of interest: exp 𝑖𝑥 , exp −𝑥! , exp 𝑥 , Θ 𝑥 ,⋯



Idea I: Parallelize quantum sub-routines

Quantum circuit Quantum circuit Quantum circuits
Classical 

post-
processing

Classical 
pre-

processing

Each                      qubits



Idea II: Classical instead of quantum access
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Classical access model

• Focus on 𝑁×𝑁 matrices with given Pauli decomposition 𝐴 = ∑"#$% 𝑎"𝑃"  
and function some function 𝑓, sample properties of 𝑓 𝐴

• Classical access model = ability to sample from 𝑎" "  and known Pauli 
weight 𝜆 𝐴 = ∑" 𝑎" 	

• Example: 𝐴 = Hamiltonian NB: λ A ≤ L ≤ N* but often even λ A = O(logN)

• Use Hadamard test and importance sampling, just now with Fourier 
series of function 𝑓!



1. ---------------
2. ---------------
3. ---------------
4. ---------------
5. ---------------
…

Sampling Alg.

Fourier approximation of f Pauli decomposition of A

Quantum linear algebra result

(i) sample 𝜓 𝑓 𝐴 𝜙

(ii) sample 𝑇𝑟 𝑓 𝐴 𝜙 𝜙 𝑓 𝐴 ∗𝑂
Given 𝜙 , 𝜓 , 𝑂



Sampling Alg.

Fourier approximation of f Pauli decomposition of A

Quantum linear algebra result

Quantum circuit Quantum circuit 
Quantum 

circuits

1. ---------------
2. ---------------
3. ---------------
4. ---------------
5. ---------------
…
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Complexities quantum linear system solver

• Task (i): Given 𝑁×𝑁 complex matrix 𝐴 = ∑"#$% 𝑎"𝑃"  in Pauli input model, 
and preparations for 𝜙 , 𝑏 , sample from ⟨𝜙|𝐴,$|𝑏⟩
• Only use log𝑁 + 2 qubits in total!
• Flexible trade-off possible, one choice

𝑛-(.+' = @𝑂 𝜆! 𝐴 ⋅ ||𝐴,$||! , 𝑛DEFDGE.' = @𝑂 ||I$!||#

J#
 NB: often λ A = O(logN)



Example III: Quantum state 
preparation
Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen



Quantum state preparation problem

• Classical data not from table but generated via functions
• Given the function 𝑓: 𝑎, 𝑏 → ℝ, prepare the 𝑛-qubit quantum state

ΨK ≔
1
𝒩K

⋅ d
0#&

!%,$

𝑓 𝑥̅ |𝑥⟩	

   with uniform grid 𝑥̅ ≔ 𝑎 + 0(L,()
!%

	and normalization 𝒩K ≔ ∑0̅ 𝑓(𝑥̅)
• Important sub-routine in a variety of quantum algorithms, for 

different functions of interest
• Minimize number of ancilla qubits and quantum gates



Standard approach(es)

• Amplitude oracle 𝑥 0 ↦ 𝑥 |𝑓 𝑥̅ ⟩ that prepares 𝑔-bit 
approximation of the values 𝑓(𝑥̅)
• Implemented via reversible computation, using piecewise polynomial 

approximation of the function 𝑓(𝑥)
• Alternatively, reading values stored in a quantum memory
• Downsides:
• Handcrafted for every function + discretization of values of function
• Large ancilla cost – not suited for early fault-tolerant regime

• Other approaches: Grover-Rudolph, adiabatic, repeat until success, 
matrix product states, etc. (similar bottlenecks)



Quantum eigenvalue transformation (QET)
• Apply functions to the eigenvalues of a Hermitian matrix
• An 𝛼,𝑚 -block encoding of an 𝑛-qubit Hermitian 𝐴 is an (𝑛 + 𝑚)-

qubit unitary 𝑈I with
 

A = 𝛼 ⋅ 0|⊗) ⊗1O 𝑈I |0 ⊗) ⊗1O
• Base functions are even degree 𝑑 polynomials
à QET circuit output is block encoding 𝑈I&  of the matrix 𝐴P

• Implementation cost:
&
# applications of 𝑈 and 𝑈∗ each + O(d) other gates in between



QET continued

• Efficient classical pre-computation of angle set {𝜃$, 𝜃!, ⋯ , 𝜃P}
• Odd polynomials, general functions via polynomial approximation, 

complexity given by degree of polynomial

• Example circuit for even degree 𝑑 polynomial and 𝑚 = 1:



Main idea: State preparation via QET

• Create low-cost block encoding 
of 𝐴 ≔ ∑0#&!%,$ sin '

#% |𝑥⟩⟨𝑥| via
  

 = (1,1) block encoding

• Idea: Applying QET, convert this into block encoding of ∑0#&!%,$ 𝑓(𝑥̅)|𝑥⟩⟨𝑥| 
using polynomial approximation of 𝑓 𝑏 − 𝑎 arcsin ⋅ + 𝑎

• Run circuits on input |𝑥$⋯𝑥O⟩ ⊗ |0⋯0⟩( = |+⟩⊗O|0⋯0⟩(  and use 
amplitude amplification to maximize probability of |ΨK⟩ ⊗ |0⋯0⟩(

𝑅! 𝛼 ≔ exp −𝑖𝛼𝑌



Quantum complexities

• For sufficiently smooth functions 𝑓, we can prepare a quantum state 
|Ψ QK⟩ that is 𝜀-close in trace distance to |ΨK⟩	using

w𝑶 %()* +$!

ℱ-.
/  gates + 4 ancilla qubits

• Show analytical results via minimax polynomial
• In practice use instead (works even better):
• Remez approximation or even just Local Taylor series
• 𝐿$-approximation on grid

with discretized 𝐿"-norm filling-fraction (𝑁 ≔ 2#)
 

ℱ$
% ≔

('())
% ∑!"#$%& $ -̅ '

'() |$|()*'
≈

∫+
, |$ -̅ |'0-̅

('())|$|()*'
=:ℱ$

1



Analytical performance: Gaussians

• Example function 𝑓R 𝑥 ≔ exp ,0#𝑥
!

• For 𝜀 ∈ 0, !#  and 0 ≤ 𝛽 ≤ 2O we can prepare the [−1,1] uniform 
grid Gaussian state on 𝑛 qubits up to 𝜀-precision with gate complexity

𝑂 O⋅TUV
1
2 !
+  + 3 ancilla qubits

   for 𝛽 ≥ log !
+ .

• Note: All other approaches use hundreds of ancilla qubits



Numerical benchmarking: tanh(x)

• Example function tanh(𝑥) in the range 𝑥 ∈ [0,1] on 𝑛 = 32 gives

• Cost are lower bounds minimizing gate count, based on state-of-the-
art amplitude oracles (which could potentially be improved)
• Other methods give even higher costs



Conclusion / Outlook



Quantum algorithms for early fault-tolerance

• Motto: Classical whenever possible, use as few qubits as possible
• Finding: Early fault-tolerant methods can even be competitive with state-

of-the-art (non-qubit aware) schemes in terms of asymptotic complexities
• Needed: More quantum resource counts for different applications, end-

to-end complexity analyses
• Guiding questions:

• What quantum algorithms do we eventually want to run?
• For what applications is the quantum footprint the smallest to become 

competitive with classical methods?

Thank you!



Some references



Paper references of our work
• A randomized quantum algorithm for statistical phase estimation

QIP21, Physical Review Letters (2022) with Campbell, Wan

• Qubit-efficient randomized quantum algorithms for linear algebra
QCTIP23, TQC23, arXiv:2302.01873 (2023) with McArdle, Wang

• Quantum state preparation without coherent arithmetic
arXiv:2210.14892 (2022) with McArdle, Gilyen

• Quantum resources required to block-encode a matrix of classical data
IEEE Transactions on Quantum Engineering (2022) with Clader, Dalzell, Stamatopoulos, Salton, Zeng

• A streamlined quantum algorithm for topological data analysis with 
exponentially fewer qubits
QIP22, arXiv:2209.12887 (2022) with McArdle, Gilyen

• Sparse random Hamiltonians are quantumly easy
QIP22, arXiv:2302.03394 (2023) with Chen, Dalzell, Brandão, Tropp



Extra content ground state energy



Fourier series lemma (Heaviside function)

• Improved Fourier series approximation of Heaviside function

• Technical contribution:

Gate complexity for precision Δ > 0	from 𝑂 Δ"$log$ Δ"#  to 𝑂 Δ"$

[Lin & Tong, PRX Quantum (2022)]



Random compiler lemma (Hamiltonian simulation)

• For 𝑒+,- with H = ∑/0#1 𝛼/𝑃/, we give linear combination of unitaries (LCU) 𝑒+,- =

∑S 𝑏S𝑈S such that:

I. 𝜇(𝑟) ≔ ∑S 𝑏S ≤ exp 𝑡$𝑟"#

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈S = 𝑟 controlled single qubit Pauli rotations ∀𝑘

• Gate complexity 𝑟 versus sample complexity exp 𝑡$𝑟"#

• Example: 𝑟 = 2𝑡$ à 𝜇 ≤ 𝑒 and 𝐶𝑂𝑆𝑇 𝐶 − 𝑈S = 2𝑡$

• Use this on: 𝐶 𝑥 ≈ ∑!∈* J𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-



Random compiler for CDF

• CDF 𝐶 𝑥 ≈ ∑! J𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!- 	 becomes 𝐶 𝑥 ≈ ∑!∑S J𝐹!𝑒+!(𝑏S
! 𝑇𝑟 𝜌𝑈S

! 	

• 𝑒+,!- = ∑S 𝑏S
! 𝑈S

!  decomposition for runtime vector 𝑟 = (𝑟!)!∈ ℕ *  as:

I. 𝜇! ≔ 𝜇!(𝑟) ≔ ∑S 𝑏S
! ≤ exp 𝑡!$𝑟!"#

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈S
! = 𝑟!



Putting things together

• CDF decomposition 𝐶 𝑥 ≈ ∑!∑S J𝐹!𝑒+!(𝑏S
! 𝑇𝑟 𝜌𝑈S

! 	

• 𝐶45,6 = ∑+∈* | J𝐹+|𝜇+
"# ⋅ ∑!∈* J𝐹! 	𝜇!𝑟!

• 𝐶T5UV/6 ∝ ∑!∈T J𝐹! 𝜇!
$

• As 𝜇! ≤ 𝑒,!
%W!

&'
	choosing 𝑟! = 2𝑡!$ ∀𝑗 gives 𝜇! ≤ 𝑒:

𝐶45,6 ∝ ∑+∈* J𝐹+
"# ∑!∈* J𝐹! 	𝑗$  à 𝐶45,6 = ]𝑂 𝜆$Δ"$  

𝐶T5UV/6 ∝ ∑!∈T J𝐹!
$

 à 𝐶T5UV/6 = ]𝑂 𝜂"$



Finite size numerical analysis

• Asymptotic complexity from fixed runtime vector 𝑟 with 𝑟! = 2𝑡!$ ∀𝑗 ∈ 𝑆

• Optimize 𝑟 to minimize 𝐶45,6, 𝐶T5UV/6, or 𝐶45,6 ⋅ 𝐶T5UV/6 for different settings?

• High-dimensional optimization problem, technical contribution: approximate 
dimension reduction that allows for efficient classical pre-processing

• Leads to flexible resource trade-offs:



Extra: Proof Fourier series lemma

• Rigorous argument via truncated Chebyshev series of rescaled error function:

erf 𝛽𝑦 = 2𝜋"
'
% ∫7

XY 𝑒",%𝑑𝑡 ≈ ∑S 𝑐S𝑇S 𝑦

• Fourier series: Θ 𝑥 ≈ erf 𝛽sin 𝑥 ≈ ∑S 𝑐S𝑇S cos &
$
− 𝑥

   using 𝑇S cos ⋅ = cos 𝑘 ⋅



Extra: Proof random compiler lemma

• For H = ∑/0#1 𝛼/𝑃/ and 𝑟 ∈ ℕ:	𝑒+-, = 𝑒+-,W&'
W
= 1 + 𝑖𝑡𝑟"#𝐻 +⋯ W

1 + 𝑖𝑡𝑟()𝐻 =]
+,)

-

𝑝+ 1 + 𝑖𝑡𝑟()𝑃+ ∝]
+,)

-

𝑝+𝑒./0$  for 𝜃 = arccos 1 + 𝑡*𝑟(*

• Similarly handle higher order terms – contain Paulis as well

• To sample 𝑈S from 𝑒+-, = ∑S 𝑏S𝑈S: independently sample 𝑟 unitaries 

𝑊#, …	,𝑊W	from decomposition of 𝑒+-,W&'  and implement product



Extra: qDRIFT comparison

• qDRIFT approximates quantum channel

𝜌 ↦ 𝑒+-,𝜌𝑒"+-, for 𝐻 = ∑/0#1 𝑝/𝑃/ (normalized)

   by sampling 𝑟 Paulis 𝑃/' , … , 𝑃/(  independently with Pr 𝑃/ = 𝑝/ and putting

V ≔ 𝑒+,W
&'3"' ⋯𝑒+,W&'3"(

• qDRIFT compilation error can only be suppressed by increasing gate count 𝑟

• Our random compiler: approximates unitary U = 𝑒+-, and compilation error can be 
suppressed arbitrarily by simply taking more samples

[Campbell, PRL (2019)]



Extra content linear algebra



(                         )Sample one string of gates : 

Sampling algorithm for (i)

Run circuit, obtain single measurement 
statistic 

Decompose into linear combination of strings of gates composed of              gates             

For

Average over               Get answer

Multiply        by “weight” of linear combination. Record. 

= Pauli gate +   
Pauli rotation



(                  ) ,

Sampling algorithm for (ii)

Sample two strings of gates (                 )

For

Run circuit, obtain single measurement 
statistic 

Average over               Get answer

Multiply        by “weight” of linear combination. Record. 



Linear Systems

Given                matrix       and state     ,  

prepare

prepare

with probability at least            

• Number of quantum circuits: 

• Number of (non-Clifford) gates:

• Qubit count:                         (Hermitian),                         (general)



Extra content state preparation



Main result complexities

• Discretized 𝐿!-norm filling-fraction (𝑁 ≔ 2O) as
 

ℱK
g ≔

(L,()
g ∑'34/$! K 0̅ #

L,( |K|567#
≈

∫8
9 |K 0̅ |#P0̅

(L,()|K|567#
=:ℱK

j

• Theorem I: Given a degree 𝑑k 	polynomial approximation �𝑓 of 𝑓,(∗) we 
can prepare a quantum state |Ψ QK⟩ that is 𝜀-close in trace distance to 
|ΨK⟩	using 𝑂 OP:

ℱ-.
/  gates + 4 ancilla qubits, for 𝛿 = 𝜀min{ℱK

g , ℱ QK
g }.

	

(∗) when �𝑓(⋅)	applied to sin (
Z  approximates [ (̅

|[|)*+
 to 𝐿%-error on [𝑎, 𝑏]



Main result complexities simplified

• Theorem II: For sufficiently smooth functions 𝑓, ∗ we can prepare a 
quantum state |Ψ QK⟩ that is 𝜀-close in trace distance to |ΨK⟩	using

 

w𝑶 %()* +$!

ℱ-.
/  gates + 4 ancilla qubits.

(∗) need 𝐿%-approximation 𝛿 ∝ exp(−𝑑^) for degree 𝑑^ polynomial

• Show analytical results via minimax polynomial
• In practice use instead (works even better):
• Remez approximation or even just Local Taylor series
• 𝐿$-approximation on grid



Complexity comparison literature

Note: 𝑔,-bit amplitude oracles with degree "𝑑, piecewise polynomial approximation ( "𝑑, ≠ 𝑑, in general)



Outlook

• Introduced versatile method for preparing a quantum state whose 
amplitudes are given by some known function
• Based on the QET, orders of magnitude savings in ancilla qubits
• Needed: More detailed practical resource estimates, more functions
• Open questions:
• Example square root function 𝑥̅ for 𝑥̅ ∈ [0,1], non-differentiable at 𝑥̅ = 0
    à use 𝑥̅ + 𝑎 instead?
• Multivariate functions via multivariate QET?

Thank you.



Algorithm: Setup

• Treat special case: 𝑎 = −1, 𝑏 = 1, with function 𝑓 𝑥 = 𝑓(−𝑥)
• Goal: Prepare the 𝑛-qubit quantum state

ΨK = $
𝒩.

⋅ ∑0#,g/!
g/!,$ 𝑓 𝑥̅ |𝑥⟩	with 𝑥̅ = #'

/ , and 𝒩K = ∑0̅ 𝑓(𝑥̅)

1. Start with block encoding of 𝐴 = ∑0#,g/!
g/!,$ sin #'

/ |𝑥⟩⟨𝑥|

2. QET to convert into block encoding of ∑0#,g/!
g/!,$ 𝑓(𝑥̅)|𝑥⟩⟨𝑥|

3. 𝑂 1/ℱ QK
g  rounds of exact amplitude amplification (extra ancilla)

• Need to start with (extensive) classical pre-processing!



Algorithm: Quantum circuits
1. 𝑈opq block encoding
    circuit

2. 𝑈 QK  block encoding
    circuit

3. Amplitude amplification
    (exact) circuit



Algorithm: Classical pre-computation
• Compute polynomial ℎ(𝑦) such that

   |ℎ 𝑦 |rst
u∈ ,$,$ ≤ 1 and ℎ sin 𝑦 − .(<)

. < 567
<∈ $!,!

rst

u∈ ,$,$
≤ 𝛿

   leading to approximation �𝑓 𝑥 ≔ h sin 𝑥̅
   (Remez algorithm / local Taylor series / 𝐿*-approximation on grid / …)

 

• Compute discretized 𝐿!-norm filling-fraction ℱ QK
g ≈ ℱ QK

j  of �𝑓(𝑥)
(choose depending on how large 𝑁 = 2_ is)

 

• Compute QET angle set {𝜃$, 𝜃!, ⋯ , 𝜃P} of polynomial �𝑓(𝑥)
   (analytically good Haah method or numerically good Dong et al. method)



Extension: Non-smooth functions

• First approach: Use coherent inequality test with flag qubit for 
piecewise QET polynomial implementation

à for 𝑘 discontinuities this requires (𝑘 + 𝑛) ancilla qubits and 2𝑘𝑛 
Toffoli gates for the inequality comparison
• Second approach: Example triangle function for 𝑥̅ ∈ [0,1]

instead use

àuse coherent inequality test to flip for 𝑥̅ > !
" and in the end reverse 

this inequality check



Extension: Fourier based QET

• Block-encoding of 𝐴 is replaced by controlled time evolution
 

𝑉 𝐴 ≔ |0⟩⟨0| ⊗ 1 + |1⟩⟨1| ⊗ exp 𝑖𝐴𝑡
• Fourier-based QET uses calls to 𝑉(𝐴), together with single-qubit-

rotations, to apply a function 𝑓 ⋅  in Fourier series form to 𝐴
• We can implement 𝑉(𝐴) for diagonal 𝐴 = ∑0 𝑥̅|𝑥⟩⟨𝑥| using 𝑛 

controlled 𝑍-rotations
• Example with compact Fourier series: Cycloid function
à 𝑛 = 32 for 𝑥̅ ∈ [0,2𝜋], gives 7.35×10y Toffoli gates
     + 3 ancillas qubits

From wikipedia


