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Problem: Ground state energy estimation
• Given 𝑛-qubit Hamiltonian

H ≔ ∑!"#$ 𝛼!𝑃! with 𝑃! 𝑛-qubit Paulis

and one-norm 𝜆 ≔ ∑!"#$ 𝛼! ,	together with efficiently preparable 𝑛-qubit 
ansatz state 𝜌 with overlap

⟨𝜙% 𝜌 𝜙%⟩ ≥ 𝜂 > 0

for ground state 𝜙% ⟨𝜙%| with energy 𝐸%

• Goal: Compute estimate 4𝐸% with precision 4𝐸% − 𝐸% ≤ Δ



Goals for early fault-tolerance scheme

1. Minimize number of qubits needed – only one ancilla

2. Independent of the number 𝐿 of Pauli terms in 𝐻 – instead, depending 
on one-norm 𝜆 ≤ 𝐿

3. Trade-off gate versus sample complexity
4. Decrease error by solely taking more samples



Main Result



Algorithm ground state energy estimation

• Output 4𝐸% with 4𝐸% − 𝐸% ≤ Δ with probability 1 − 𝜉 by employing

𝐶&'()!* = 4𝑂 𝜂+, = 𝑂 𝜂!"log" 𝜆Δ!#log 𝜂!# log 𝜉!#log 𝜆Δ!#

quantum circuits on 𝑛 + 1 qubits, each using one copy of 𝜌 and

𝐶-'.* = 4𝑂 𝜆,Δ+, = 𝑂 𝜆"Δ!"log" 𝜂!#

single-qubit Pauli rotations exp 𝑖𝜃𝑃!

• Plus: Clifford gates – generated by CNOT, H, and S (Paulis)



Complexity ground state energy estimation

• 𝑛 qubit Hamiltonian, 𝑛 + 1 qubits with quantum complexities 

independent of 𝐿:

𝐶-'.* = 4𝑂 𝜆,Δ+, for 𝐶&'()!* = 4𝑂 𝜂+,

• Randomized algorithm with classical pre- and post-processing

• Comparison state-of-the-art qubitization based approach:

Gate complexity 4𝑂 𝐿𝜆Δ+# for 4𝑂 𝐿 qubits à total 4𝑂 𝐿𝜆Δ+#
[Lee et al., PRX Quantum (2021)]



Basic idea

• Cumulative distribution function 
(CDF) relative to 𝜌:

C x ≔ 𝑇𝑟 𝜌Π/0
• Evaluate 𝐶(𝑥) from quantum 

routine?
• Eigenvalue thresholding
• Give ground state energy 

estimate 4𝐸% via binary search
[Lin & Tong, PRX Quantum (2022)]
[Martyn et al., PRX Quantum (2021)]



Quantum routine to evaluate CDF



Workhorse A: Hadamard test

• Input: 𝑛-qubit state 𝜌 together with 𝑛-qubit unitary 𝑈
• Circuit:

• Output: unbiased estimate of 𝑇𝑟 𝜌𝑈 from



Workhorse B: Importance sampling

• Estimate linear combination ∑! 𝑎!𝑇𝑟 𝜌𝑈! for unitaries 𝑈! with 𝑎! > 0 and 
normalization 𝐴 ≔ ∑! 𝑎!
• Sample 𝑗 with probability 𝑎! ⋅ 𝐴"#and perform Hadamard test on 𝜌, 𝑈! :

• Take average of samples, number of required is 𝐴$𝜎"$ for variance 𝜎 > 0
• Expected gate complexity becomes 𝐴"# ⋅ ∑! 𝑎!𝐶𝑂𝑆𝑇 𝐶 − 𝑈!



Towards quantum implementation of CDF

• Normalize Hamiltonian with c ⋅ ||𝐻||% ≤ 𝑐 ⋅ 𝜆 to put spectrum in − &
$
, + &

$

• CDF 𝐶 𝑥 ≡ 𝑇𝑟 𝜌Π'( = Θ ∗ 𝑝 𝑥 from convolution with Heaviside Θ(𝑥):



CDF via Fourier series

• Replace Heaviside Θ 𝑥 by finite Fourier series 𝐹 𝑥 ≔ ∑!∈* I𝐹!𝑒+!(

• Approximate CDF:

𝐶 𝑥 ≈ 𝑝 ∗ 𝐹 𝑥 =L
!∈*

I𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-

with runtimes 𝑡! = 𝑗 × normalization
• Hadamard test + importance sampling + Hamiltonian simulation:

[Lin & Tong, PRX Quantum (2022)]



Fourier series lemma (Heaviside function)

• Improved Fourier series approximation of Heaviside function

• Technical contribution:

Gate complexity for precision Δ > 0 from 𝑂 Δ"$log$ Δ"# to 𝑂 Δ"$

[Lin & Tong, PRX Quantum (2022)]



Hadamard test on Fourier series

𝐶 𝑥 ≈L
!∈*

I𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-

• Implement Hamiltonian simulation unitary U. = 𝑒+,!- for H = ∑/0#1 𝛼/𝑃/
• Independent of 𝐿? Technical contribution:

novel random compiler lemma (Hamiltonian simulation) Versus previous random compiler:
[Campbell, PRL (2019)]



Random compiler lemma (Hamiltonian simulation)

• For 𝑒+,- with H = ∑/0#1 𝛼/𝑃/, we give linear combination of unitaries (LCU) 𝑒+,- =

∑2 𝑏2𝑈2 such that:

I. 𝜇(𝑟) ≔ ∑2 𝑏2 ≤ exp 𝑡$𝑟"#

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈2 = 𝑟 controlled single qubit Pauli rotations ∀𝑘

• Gate complexity 𝑟 versus sample complexity exp 𝑡$𝑟"#

• Example: 𝑟 = 2𝑡$ à 𝜇 ≤ 𝑒 and 𝐶𝑂𝑆𝑇 𝐶 − 𝑈2 = 2𝑡$

• Use this on: 𝐶 𝑥 ≈ ∑!∈* I𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!-

Versus previous LCU methods:
[Berry et al., PRL (2015)]



Random compiler for CDF

• CDF 𝐶 𝑥 ≈ ∑! I𝐹!𝑒+!( ⋅ 𝑇𝑟 𝜌𝑒+,!- becomes 𝐶 𝑥 ≈ ∑!∑2 I𝐹!𝑒+!(𝑏2
! 𝑇𝑟 𝜌𝑈2

!

• 𝑒+,!- = ∑2 𝑏2
! 𝑈2

! decomposition for runtime vector 𝑟 = (𝑟!)!∈ ℕ * as:

I. 𝜇! ≔ 𝜇!(𝑟) ≔ ∑2 𝑏2
! ≤ exp 𝑡!$𝑟!"#

II. 𝐶𝑂𝑆𝑇 𝐶 − 𝑈2
! = 𝑟!



Putting things together

• CDF decomposition 𝐶 𝑥 ≈ ∑!∑2 I𝐹!𝑒+!(𝑏2
! 𝑇𝑟 𝜌𝑈2

!

• 𝐶34,5 = ∑+∈* | I𝐹+|𝜇+
"# ⋅ ∑!∈* I𝐹! 𝜇!𝑟!

• 𝐶6478/5 ∝ ∑!∈6 I𝐹! 𝜇!
$

• As 𝜇! ≤ 𝑒,!
"9!

#$
choosing 𝑟! = 2𝑡!$ ∀𝑗 gives 𝜇! ≤ 𝑒:

𝐶34,5 ∝ ∑+∈* I𝐹+
"# ∑!∈* I𝐹! 𝑗$ à 𝐶34,5 = f𝑂 𝜆$Δ"$

𝐶6478/5 ∝ ∑!∈6 I𝐹!
$
à 𝐶6478/5 = f𝑂 𝜂"$



Example systems



Finite size numerical analysis

• Asymptotic complexity from fixed runtime vector 𝑟 with 𝑟! = 2𝑡!$ ∀𝑗 ∈ 𝑆

• Optimize 𝑟 to minimize 𝐶34,5, 𝐶6478/5, or 𝐶34,5 ⋅ 𝐶6478/5 for different settings?

• High-dimensional optimization problem, technical contribution: approximate 
dimension reduction that allows for efficient classical pre-processing

• Leads to flexible resource trade-offs:



FeMoco benchmark

• Li et al. FeMoco Hamiltonian with 152 
spin orbitals: 152+1=153 qubits

• Chemical accuracy Δ = 0.0016
Hartree, one-norm 𝜆 = 1511

• Gate complexity in single-qubit Pauli 
rotations 𝑒+:;%

• 𝑇 gate or Toffoli-gate complexity 
similar

• Qubitization using heuristic 
truncations:

𝐶34,5 = 3.2 ⋅ 10#< on 2196 qubits
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[Koridon et al., PRR (2021)]

[Lee et al., PRX Quantum (2021)]



Hydrogen chains benchmark

• For length 𝑁 chain, one-norm estimate 𝜆 ≈ 𝑂 𝑁#.>?

• Our work 𝐶34,5 = f𝑂 𝑁$.@AΔ"$

• Qubitization based approaches:

A. rigorous 𝐶!"#$ = 3𝑂 𝑁%.%'Δ()

B. sparse method 𝐶!"#$ = 3𝑂 𝑁*.%Δ()

C. tensor hypercontraction method 𝐶!"#$ = 3𝑂 𝑁*.)Δ()

• Extensive properties Δ ∝ 𝑁 interesting for our methods: 𝐶34,5 = f𝑂 𝑁<.@A

[Koridon et al., PRR (2021)]

[Berry et al., Quantum (2019)]

[Lee et al., PRX Quantum (2021)]



Conclusion



Recap main result

• Given: 𝑛-qubit Hamiltonian H = ∑!"#
$ α!P! with λ = ∑!"#

$ α! , plus ansatz state ρ with 
ground state overlap ⟨ϕ% ρ ϕ%⟩ ≥ η > 0

• Output: ground state energy estimate 4𝐸% with 4𝐸% − 𝐸% ≤ Δ

• Result: 𝑛 + 1 qubits, 𝐶&'() = 4𝑂 𝜆*Δ+* , 𝐶,'-./) = 4𝑂 𝜂+*

• Advantages:
I. rigorous estimates

II. only depends on 𝜆 ≤ 𝐿
III. only uses one ancilla

IV. flexible trade-off gate versus sample complexity

V. decrease error by solely taking more samples à still state preparation bottleneck!



Extension: General matrix arithmetic

• General matrices A, instead of Hamiltonians 𝐻
• General functions 𝑓 𝑥 such as, e.g., 𝑥"#, instead of Heaviside 𝜃 𝑥
• Goal to outperform (probabilistic) classical methods with early fault-tolerance
• Quantum singular value transformation (QSVT): ||𝐴||B or 𝑠 𝐴 ⋅ ||𝐴||74(

• Qubit-efficient randomized quantum algorithms for linear algebra, Wang, McArdle, 
B., arXiv:2302.01873 (2023)

• A = ∑/0#1 𝛼/𝑃/ Paulis with 𝜆 = ∑/0#1 𝛼/ , gives 𝜆$ complexity (input model!)
• no QRAM needed

[Gilyen et al., STOC (2019)]



Thank you

• Randomized quantum algorithm for statistical phase estimation, Wan, B., Campbell, 
Physical Review Letters 129, 030503 (2022)

• Efficient randomized quantum algorithms for linear algebra, Wang, McArdle, B., 
arXiv:2302.01873 (2023)



Extra slides



Extra: Proof Fourier series lemma

• Rigorous argument via truncated Chebyshev series of rescaled error function:

erf 𝛽𝑦 = 2𝜋"
$
" ∫<

CD 𝑒","𝑑𝑡 ≈ ∑2 𝑐2𝑇2 𝑦

• Fourier series: Θ 𝑥 ≈ erf 𝛽sin 𝑥 ≈ ∑2 𝑐2𝑇2 cos &
$
− 𝑥

using 𝑇2 cos ⋅ = cos 𝑘 ⋅

[Low & Chuang, arxiv:1707.05391 (2017)]



Extra: Proof random compiler lemma

• For H = ∑/0#1 𝛼/𝑃/ and 𝑟 ∈ ℕ: 𝑒+-, = 𝑒+-,9#$
9
= 1 + 𝑖𝑡𝑟"#𝐻 +⋯ 9

1 + 𝑖𝑡𝑟()𝐻 ==
+,)

-

𝑝+ 1 + 𝑖𝑡𝑟()𝑃+ ∝=
+,)

-

𝑝+𝑒./0$ for 𝜃 = arccos 1 + 𝑡*𝑟(*

• Similarly handle higher order terms – contain Paulis as well

• To sample 𝑈2 from 𝑒+-, = ∑2 𝑏2𝑈2: independently sample 𝑟 unitaries

𝑊#, … ,𝑊9 from decomposition of 𝑒+-,9#$ and implement product



Extra: qDRIFT comparison

• qDRIFT approximates quantum channel

𝜌 ↦ 𝑒+-,𝜌𝑒"+-, for 𝐻 = ∑/0#1 𝑝/𝑃/ (normalized)

by sampling 𝑟 Paulis 𝑃/$ , … , 𝑃/& independently with Pr 𝑃/ = 𝑝/ and putting

V ≔ 𝑒+,9
#$;%$ ⋯𝑒+,9#$;%&

• qDRIFT compilation error can only be suppressed by increasing gate count 𝑟

• Our random compiler: approximates unitary U = 𝑒+-, and compilation error can be 
suppressed arbitrarily by simply taking more samples

[Campbell, PRL (2019)]


