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Noisy Channel Coding

Encoder

Information Information

Decoder

Noise

Error Correction
m bits are subject to noise modelled by N(y∣x), find encoder e and
decoder d to maximize probability p(N,m) of retrievingm bits
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Noisy Channel Coding (continued)

▸▸ Fixed number of bitsm and noise model N gives bilinear
optimization

p(N,m) = max
(e,d)

1
2m
∑
x,y,i

N(y∣x)d(i∣y)e(x∣i)

s.t. ∑
x
e(x∣i) = 1, 0 ≤ e(x∣i) ≤ 1

∑
i
d(i∣y) = 1, 0 ≤ d(i∣y) ≤ 1

▸▸ Approximating p(N,m) up to multiplicative factor better than
(1 − e−1) is NP-hard in the worst case [Barman & Fawzi 18].
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Noisy Channel Coding (continued)

▸▸ For the linear program [Hayashi 09, Polyanski et al. 10]

lp(N,m) = max
(r,p)

1
2m
∑
x,y

N(y∣x)rxy

s.t. ∑
x
rxy ≤ 1, ∑

x
px = k

rxy ≤ px, 0 ≤ rxy,px ≤ 1

we have the approximation [Barman & Fawzi 18]

p(N,m) ≤ lp(N,m) ≤ 1
1 − e−1

⋅ p(N,m)

▸▸ Polynomial-time (1 − e−1) additive approximation algorithms.
▸▸ Precise asymptotic bounds on the capacity of iid channels, etc.
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Quantum Noisy Channel Coding

▸▸ Main question: Similar results for quantum error correction?
[Matthews 12, Leung & Matthews 15]

Encoder

Quantum 
Information

Quantum 
Information

Decoder

Quantum 
Noise

Quantum Error Correction

Find encoder E and decoder D to maximize probability p(N ,m) of
retrievingm qubits
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Quantum Noisy Channel Coding (continued)

▸▸ Near-term quantum devices are of intermediate scale and noisy

Φn

E N D

Φn

▸▸ Tailor-made approximation algorithms for encoder and
decoder needed

Optimize Quantum Information Processing

Comprehensive practical mathematical toolbox rooted in
optimization theory
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Quantum Noisy Channel Coding (continued)

Φn

E N D

Φn

▸▸ Fixed number of qubitsm and quantum noise modelN leads to
quantum channel fidelity

F(N ,n) ∶=max F (Φn, ( (D ○N ○ E)⊗ I)(Φn))

s.t. E ,D quantum operations
(+ physical constraints)
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Quantum Noisy Channel Coding (continued)

▸▸ For d ∶= dim(N ) becomes bilinear optimization

F(N ,n) =max d ⋅Tr[(NĀ→B (ΦĀĀ)⊗ΦAB̄)(∑
i∈I

piE iA→Ā ⊗D
i
B→B̄) (ΦAA ⊗ΦBB) ]

s.t. E i,Di quantum operations, pi ≥ 0, ∑
i∈I

pi = 1

▸▸ To characterize is set SEPN (AĀ∣BB̄) of separable channels

∑
i∈I

piE iA→Ā ⊗D
i
B→B̄

⇒ strong hardness for quantum separability problem [Barak et
al. 12]

▸▸ Lower bounds on figure of merit via, e.g., physical intuition or
iterative see-sawmethods⇒ upper bounds?
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Monogamous Entanglement

▸▸ De Finetti theorem for quantum states: ρAB k-shareable if

ρAB1⋯Bk
with ρABj

= ρAB ∀j ∈ [k]

⇒ characterizes separable states [Stoermer 69] [Doherty et al. 02]

De Finetti Theorem for Quantum Channels

The set of separable channels is approximated by the set of
k-shareable channels as

∣SEPN (AĀ∣BB̄) − SHk
N (AĀ∣BB̄)∣ ≤

√
O (d3)

k

where the set of k-shareable channels SHk
N has a semi-definite

representation (cf. [Fuchs et al. 04, Kaur et al. 18]).
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Monogamous Entanglement (continued)

▸▸ Non-commutative sum-of-squares hierarchy [Lasserre 00,
Parrilo 03] via information-theoretic approach based on entropy
inequalities [Brandão & Harrow 16]

▸▸ Efficiently computable semi-definite program outer bounds

sdpk(N ,m) ∶=max dĀdB ⋅Tr [(NĀ→B1 (ΦĀĀ)⊗ΦAB̄1)WAĀB1B̄1]

s.t. WAĀ(BB̄)k1
⪰ 0, Tr [WAĀ(BB̄)k1

] = 1, PPT(Ak1 ∶ Bk
1) ⪰ 0

WAĀ(BB̄)k1
= (IAĀ ⊗ U

π
(BB̄)k1
) (WAĀ(BB̄)k1

) ∀π ∈ Sk

WA(BB̄)k1
= 1A
2m
⊗W(BB̄)k1 , WAĀ(BB̄)k−11 Bk

= WAĀ(BB̄)k−11
⊗
1Bk
dB

with approximation guarantee to quantum channel fidelity

spdk(N ,n) − F(N ,n) ≤

¿
ÁÁÀO (d2Ād

8
B ⋅ log dA)
k
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Certifying Optimality of Relaxations

▸▸ Compare classical linear program relaxation [Barman & Fawzi 18]

p(N,m) ≤ lp(N,m) ≤ 1
1 − e−1

⋅ p(N,m)

▸▸ No finite approximation guarantee for F(N ,m) ≤ sdpk(N ,m)

Rank Loop Conditions

If for k ∈ N there exists l ∈ N such that

rank (WAĀ(BB̄)k1
) ≤max{rank (WAĀ(BB̄)l1

) , rank (W(BB̄)k−l1
)}

then we have equality sdpk(N ,m) = F(N ,m)

▸▸ Proof via [Navascués et al. 09]
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Numerical Example Relaxations

▸▸ Uniform noise corresponds to qubit depolarizing channel

Depp ∶ ρ↦ p ⋅ 1B
2
+ (1 − p) ⋅ ρ with p ∈ [0,4/3].

Question

What is the optimal code for reliably storingm = 1 qubit in noisy 5
qubit quantummemory, p (Dep⊗5p , 1) = ?

▸▸ Analytical [Bennett et al. 96] as well as numerical see-saw type
[Reimpell & Werner 05] lower bounds available, our work gives

sdpk (Dep⊗5p , 1) ≥ p (Dep⊗5p , 1)
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Numerical Example Relaxations (continued)

▸▸ Exploiting symmetries for analytical dimension reduction for
first level sdp1 (Dep⊗5p , 1)
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See-saw lower bounds [Reimpell & Werner 05]

▸▸ For p ∈ [0,4/3] [Reimpell & Werner 05] optimal, for p ∈ [0,0.18]
there is room to look for improved codes.
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Conclusion

Take Home Message

Our optimization theory based approach provides tools to
numerically study optimal quantum error correction for practically
relevant settings of interest.

Outlook:

▸▸ So far theory outline work deriving generals methods
⇒ general dimension reduction for numerics?
▸▸ Practical architectures and error models, better lower bounds?
▸▸ Optimal quantum de Finetti theorems?
▸▸ Settings with provably efficient approximations?
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