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Quantum Information Science

Understanding quantum systems (e.g., single atoms or electrons) is hard

Richard Feynman
The Nobel Foundation

Understanding physics with computers 81

“trying to find a computer simulation of
physics seems to me to be an excellent program
to follow out (...) nature is not classical,
dammit, and if you want to make a simulation
of nature, you would better make it quantum
mechanical, and by golly it is a wonderful
problem, because it does not look so easy”

Information processing based on quantum physics:
Quantum Information Science



Quantum Technologies

Main motivation is

that we believe quantum technologies will enable us to do things that we do
not know how to do using only (future) classical technology

Academic interest: EU quantum manifesto + UK national network of
quantum technology hubs (UKNQT) + US/China etc.

Central intelligence agencies NSA + GCHQ: “we must act now against the
quantum computing threat in cryptography”

Big IT players investing in quantum technologies: Alibaba, Google, IBM,
Intel, Microsoft, Nokia Bell Labs, NTT Laboratories, etc.



Quantum Technologies: Hardware

Build well-controlled quantum systems: approaches range from cavity
quantum electrodynamics, optical lattices, ion traps, superconductors,
quantum dots, linear optics, nuclear magnetic resonance, etc.

Imperial Centre for Quantum Engineering, Science and Technology (QuEST)

Hardware based (direct) applications

Quantum sensing, quantum clocks, quantum annealing, analogue quantum
simulations, etc.



Overview of Quantum Technologies

1 Quantum simulation: evolution of quantum systems (digital) for
computational quantum chemistry

2 Quantum computation: up to super-polynomial speed-ups over
best-known classical algorithms, e.g.,

Shor’s algorithm 94

Quantum algorithm

for prime factorization breaks
RSA public key cryptosystem
— virtually any encryption
scheme in use today

3 Quantum cryptography: quantum-safe cryptography + quantum-based
cryptography

4 Quantum communication: quantum repeaters, quantum internet



This Talk: Quantum Cryptography

Quantum-safe (post-quantum) cryptography:

academic interest (e.g.,CRYPTO)

ongoing NIST “Post-Quantum Cryptography
Standardization”

computational / quantum memory attacks

Quantum-based cryptography:

quantum key distribution

secure multi-party computation

delegated computation

randomness generation



Cryptography from Uncertainty versus Entanglement

Heisenberg’s uncertainty principle

Strong quantum correlations — entanglement

Basic idea: principles fight each other ⇒ quantum cryptography but also
quantum adversaries
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Qubits

Classical information unit: bits take values 0 or 1 with certain probabilities

Quantum information unit: qubits take values |ψ〉 on the Bloch sphere
S2 ⊂ R3



Uncertainty Principle

Quantum mechanics: impossible to measure in what exact state |ψ〉 the
qubit is, rather measure along axis, e.g., X or Z
⇒ measurement collapses |ψ〉 to probability distributions {px} or {qz}
Heisenberg’s uncertainty principle

Information-theoretic uncertainty relation [Maassen-Uffink 88]

H(X )︸ ︷︷ ︸
uncertainty

about X

+ H(Z)︸ ︷︷ ︸
uncertainty

about Z

≥ 1 with H(X ) = −
∑
x

px log px Shannon entropy



Entanglement

Quantum correlations between qubits can become much stronger than
classical correlations — entanglement

Implications for the concept of uncertainty [Einstein et al. 35]:
measurement results on A available when having access to B



Uncertainty versus Bipartite Entanglement

Entanglement changes uncertainty relation (quantum adversary B)

H(X ) + H(Z) ≥ 1 ⇒ H(X |B)︸ ︷︷ ︸
uncertainty about

X given B

+ H(Z |B)︸ ︷︷ ︸
uncertainty about

Z given B

= 0 � 1

with H(X |B) = H(XB)− H(B) the conditional von Neumann entropy

Uncertainty — entanglement [Coles et al. (B.) Rev. Mod. Phys. 17]

H(X |B)︸ ︷︷ ︸
uncertainty about

X given B

+ H(Z |B)︸ ︷︷ ︸
uncertainty about

Z given B

≥ 1 + H(A|B)︸ ︷︷ ︸
entanglement

between A and B

What happens if we add a second observer E?



Uncertainty versus Tripartite Entanglement

Entanglement is monogamous — it cannot be shared freely

Alice	 Bob	

Eve	

Tripartite uncertainty [Coles et al. (B.) Rev. Mod. Phys. 17]

H(Z |E)︸ ︷︷ ︸
Eve’s uncertainty
about Alice’s Z

+ H(X |B)︸ ︷︷ ︸
Bob’s uncertainty
about Alice’s X

≥ 1

Interplay between uncertainty and entanglement leads to cryptography



Quantum Key Distribution: Setup

Fully insecure public quantum channel together with authenticated
classical channel and local randomness allow for information-theoretically
secure key distribution [Wiesner 70] [Bennett & Brassard 84] [Mayers 06]

Public	
channel	

authen-cated	classical	channel	

Key allows for secure communication (message size = key size)
[Vernam 26] [Shannon 49]

Monogamy of entanglement and uncertainty principle for security



Quantum Key Distribution: Protocol & Security

Toy protocol [Ekert 91]

1 Preparation: share two-qubit state, using
the public channel

2 Measurement: along X or Z axis,
coordinate using authenticated channel

3 Repeat: steps 1 and 2 many times

4 Parameter estimation: including privacy
amplification and error correction

QKD security proof idea

H(Z |E)︸ ︷︷ ︸
Eve’s uncertainty

about key Z

≥ 1− H(X |B) ≥ 1− H(X |X ′)︸ ︷︷ ︸
with

Alice & Bob



Two-Party Cryptography: Task

Two mutually distrustful parties want to achieve a task, example:
secure function evaluation (others are secure identification, bit
commitment, oblivious transfer, coin tossing, etc.)

f	

x	 y	

f(x,y)	

f	

x	 y	

f(x,y)	

Quantum advantage but no information-theoretic security possible [Lo 97]



Two-Party Cryptography: Model & Security

Security analysis: need bound for entanglement H(A|B) in

H(X |B) + H(Z |B) ≥ 1 + H(A|B)

Bounded (noisy) storage model: adversary computationally all powerful,
actions are instantaneous, unlimited classical storage, but limited quantum
memory [Damgard et al. 05]

Classical		
informa2on	

Arbitrary		
encoding	

Quantum	
informa2on	

Adversary’s	
informa2on	

Measurement	

Noisy	quantum	
storage	

	

Unlimited	
classical	storage	

F�t : B(Hin) � B(Hout)

Quantum: no quantum memory needed for implementation vs.
n − O(log2 n) qubits to break scheme [Pirandola et al. (B.) arXiv 19]



Quantum Adversaries I

Cryptographic sub-routines like privacy amplification for post-processing
[Bennett & Brassard 88]

Main challenge

Do these protocols work when taking quantum adversaries into account?
Yes [Renner 05] + No [Gavinsky et al. 07]

Routines as bilinear optimization problems [B. et al. SIAM J. Optim. 16]

p(A, g , k) = maximize
(zα,yβ )

∑
α,β

Aα,βzαyβ

subject to g(z1, . . . , zN) ≥ 0

k(y1, . . . , yM) ≥ 0

with sets of affine constraints
{
g(z1, . . . , zN)} and {k(y1, . . . , yM)

}
General theory of pseudo-randomness [Vadhan 07]



Quantum Adversaries II

p(A, g , k) = maximize
(zα,yβ )

∑
α,β

Aα,βzαyβ

subject to g(z1, . . . , zN) ≥ 0

k(y1, . . . , yM) ≥ 0

The performance p∗(A, g , k) against quantum adversaries is measured by
quantum bilinear optimization [B. et al. SIAM J Optim. 16]

p∗(A, g , k) = maximize
(|ψ〉∈C2n ,Eα,Dβ)

∑
α,β

Aα,β〈ψ|EαDβ |ψ〉

subject to EαDβ − DβEα = 0

g(E1, . . . ,EN) � 0

k(D1, . . . ,DM) � 0

where g(E1, . . . ,EN) � 0 and k(D1, . . . ,DM) � 0 positive semidefinite
Characterization via operator spaces = non-commutative Banach spaces
[B. et al. IEEE Trans. Inf. Theory 16]



Quantum Adversaries III

Can we find outer approximations p(A, g , k) ≤ p∗(A, g , k) ≤ · · · ?

Semidefinite hierarchies [B. et al. SIAM J. Optim. 16 / arXiv 19]

p(A, g , k) ≤ p∗(A, g , k) = SDP∞(A, g , k) ≤ · · · ≤ SDP1(A, g , k)

Semidefinite program (SDP): optimization of linear objective function over
intersection of the cone of positive semidefinite matrices with affine space

Can certify security against quantum adversaries if for example

p(A, g , k) ≤ p∗(A, g , k) ≤ SDP1(A, g , k)
?

≤ C · p(A, g , k)

Flexible proof tool for upper bounding the power of quantum adversaries
for a variety of cryptographic protocols



Conclusion & Outlook

Quantum technologies for cryptography, challenges from quantum
adversaries:

1 Relation between uncertainty and entanglement for simple and tight
security proofs

2 Efficiently computable semidefinite programming upper bounds on the
power of quantum adversaries

Security of mathematical model versus security of experimental
implementation — goal is to close this gap

Security in laboratory versus secure for everyday use — quantum
technologies are adding non-trivially to this equation

Device-independent cryptography? Yes, but not practical yet...
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