Impenal Co"ege Algorithms & Complexity Theory Seminar Series
London Oxford, 16 May 2019

Semidefinite programming hierarchies for
quantum information

Mario Berta

[SIAM Journal on Optimization '16] with Fawzi and Scholz
[arXiv:1810.12197] with Borderi, Fawzi, and Scholz



Imperial College
London

Theory of Quantum Information at Imperial

N

i
Francesco Borderi
PhD Department of

Carlo Sparaciari

Mario Berta EPSRC Doctoral Prize Computing

Lecturer

Samson Wang

Hyejung Jee Navneeth PhD Quantum Systems
PhD Controlled Ramakrishnan Engineering
Quantum Dynamics Imperial President’'s PhD

2/19



Imperial College
London

Quantum Information Processing
@ The theory of information processing depends on underlying physical laws.

o Quantum information theory is based on (non-relativistic) quantum mechanics.

Research over the past two decades has shown:

Quantum information is in general fundamentally different from classical information.

Entangled quantum particles

o Quantum information is largely rooted in physics and thus often uses techniques
motivated from physics.
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Theoretical Computer Science for Quantum Information

Basic idea:

Many quantities of interest in information processing can be phrased as bilinear
maximization programs => make use of this structure.

@ Winning probability of two-player games
(CS) —violation of Bell inequalities (Physics)

@ Information theory, e.g., success probability of
error correcting codes

o Cryptography, e.g., cheating probability of
adversaries

o Communication complexity

o Completely positive semidefinite cone, etc.

Quantum technologies @Imperial

Optimization methods for quantum information processing:

Approximate bilinear maximization programs via semidefinite programming hierarchies!
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This Talk

General approach:

Goal is to quantify the difference between classical and quantum information for
operational problems—via semidefinite programming hierarchies.

o Develop by means of concrete example —noisy channel coding:

Encoder Decoder

Noisy channel Wx_,y mapping X to Y with transition probability Wx_,y (y|x).

@ Outline:

@ Classical channel coding
@ Quantum-assisted channel coding
@ Quantum channel coding
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Part 0: Noisy Channel Coding

i€ [k] — {e(w\i)}zex

Encoder Decoder

@ The goal is to send k bits using Wx_,y while maximizing the success probability
for decoding:

1
p(W, k)= ma>;i,r;1ize oK ;,- Wx v (ylx)d(ily)e(x]i)

subject to Ze(x\i) =1Vie 24, Zd(i\y) =1Vyey

X

0<e(xli)<1, 0<d(ily)<1

o Information-theoretic approach to error correction: Bilinear optimisation with
linear constraints.
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Quantum Assistance: Bits versus Qubits

@ Classical information unit:
Bits take values 0 or 1 with certain
probabilities

@ Quantum information unit:
Qubits take values |¢) on the Bloch sphere
S2CR3

@ Quantum effects such as uncertainty principle
for measurements or entanglement from
quantum correlations

Quantum state:

For d degrees of freedom general quantum state given by unit vector [¢) € ce.
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Part 1: Quantum-Assisted Channel Coding

i€ M —| {El)}, y PP e —
o— e

: [¥) e C? @ C?
Encoder Decoder

o Use Wx_,y and quantum assistance —that is to be optimized over:

p* (W, k) = maximize 2% Z Wy vy (y|x) (| E(x|i) @ D(ily)|)

|)€Cd,E,D oy
subject to Y E(x|i) =idgxq Vi € 2], Y D(ily) =idgxa Vy € ¥
x i
0 =X E(x|i) Xidgxd, 0= D(ily) Ridgxqs, ¥)l=1

@ Versus classical value: p(W, k) = max g 2%( 2 oyi Wxoy (y|x)d(ily)e(x|i).
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Quantum-Assisted Channel Coding (continued)

Goal is to understand the possible separation:
p(W, k) < p*(W, k) < ? Is this even computable?

o Example separation for d = 2 quantum assistance [Prevedel et al. '11]:

1/31/3 0 0
0 0 1/31/3 _
w=|130130 5 2427172

0 1/3 0 1/3 has p(W,2):gz0.833<0.902zf < p*(W,2).

1/3 0 0 1/3
0 1/31/3 0

@ Also optimal for d = 2 quantum assistance [Hemenway et al. '13] but remains
unclear what p*(W,2) =7

o Lower bounds on p*(W, k) via feasible points and, e.g., see-saw optimisation.
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Quantum-Assisted Channel Coding (continued)

. 1 ‘ . . ‘
p* (W, k) = maximize = E Wy v (y|x) (| E(x|i) @ D(ily)|)
lp)ecd, .0 2% =

subject to Y E(x|i) =idgxq Vi € 2], D D(ily) =idgxa Vy € ¥
X i
0 X E(x|i) Ridgxds 0= D(ily) Ridaxa, ) =1
o See-saw based lower bounds on p* (W, k) lead to semidefinite programs.

Semidefinite programs (SDP):

Optimization of a linear objective function over the intersection of the cone of positive
semidefinite matrices with an affine space.

= solved efficiently in terms of the size of the matrices and the approximation error

@ Question: How to generate upper bounds on p*(W, k)?

o Answer: Non-commutative version of sum-of-squares semidefinite programming
hierarchies of [Lasserre '01] and [Parrilo '03]!
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SDPs for Quantum-Assistance

Asymptotically converging hierarchy of SDP relaxations:

Motivated by [Navascues et al. '07 '08] [Doherty et al. '08] [Pironio et al. '10] we give

p* (W, k) <sdp,(W, k) <--- <sdp(W, k) with p* (W, k) = ILm sdp, (W, k).
n oo
@ For our example channel W the first level gives

1 1
*(W,2) <sdp;(W,2) = 0908 = = + —
P (W, 2) < sdpy (W, 2) 2+ 7
versus p(W,2) = % ~ 0.833 and d = 2 lower bound p*(W,2) > 0.902.

Then found d = 4 lower bound p*(W,2) > % + %!

o Follow-up [Barnam and Fawzi '18] give rounding for linear program Ip(W, k) as

P(W, k) < p™(W, k) = sdpeo (W, k) < sdpy (W, k) <Ip(W, k) < - “p(W, k)

P

o Better than (1 — e_l)-approximation NP-hard and simple polynomial-time
algorithms for classical error correction codes that achieve this approximation.
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SDPs for Quantum-Assistance (continued)

o General form quantum information [B. et al., SIAM Journal on Optimization '16]:

*[A,G,K] = maximize A E.D
ol ] ) €H,Ea,Dg % .5 (W|EaDgli)

subject to EoDg = DgEy V(o,B) € [N] x [M]
g(Er,...,En) = 0Vgeg
k(D1,...,Dy) = 0k € K

with normalized |¢) € H (Hilbert space), Hermitian bounded operators E, Dg
on H, and sets of affine constraints G, K.

@ Proof of asymptotic convergence
¥ o
P7(A.G,K) = lim_sdp,(A,G,K)

via non-commutative Positivstellensatz [Helton and McCullough '04] and
purifications in C*-algebras [Woronowicz '73].

o Finite convergence unclear, related to deep problems in operator algebra theory:
Connes' embedding conjecture.
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Part 2: Quantum Channel Coding

o Classical channel coding (with or without quantum assistance):

{d(i‘y)}ie[k] —

Encoder Decoder

o Make message and channel itself quantum —quantum channel coding:

[¥)oq EQa Dp-o

Encoder Decoder

Q: Reference
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Quantum Channel Coding (continued)

@ The goal is to send k qubits using quantum channel A4_, g while maximizing the
quantum channel fidelity (uniform message quantum success probability)

F(N, k) = dadp - ma)girgize Tr [(J;/‘\é ® ¢QO) (Eng ® DBQ)]
1
subject to Eag =0, Ep= %
A

lagxd,
Dpg =0, Ds=—¢-=

with ® 45 the 2k dimensional maximally entangled state and Jij\\[B the Choi state
of NA—>B-

o Information-theoretic approach to quantum error correction:
Bilinear optimization with matrix valued variables and linear constraints.

Noisy Intermediate-Scale Quantum (NISQ) technology:

Near-term quantum hardware is only a few qubits in size and inherently noisy, in
particular quantum memory (in stark contrast to classical memory!).
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SDPs for Quantum Optimization

F(N, k) = dads - maimize  Tr [(% ® ¢Q@) (Eag ® DB@)]

1
subject to  Epg =0, Ep= %
A
1
Deg =0, Dp =%

@ See-saw based lower bounds on F(MN, k) lead to semidefinite programs, e.g.,
explored in [Reimpell & Werner '05]. Upper bounds on F(N/, k)?

Non-commutative sum-of-squares hierarchy of SDP relaxations:
Motivated by [Doherty et al. '02] we give
F(N, k) < sdp,(N, k) < --- <sdp; (N, k) with (slow) finite convergence

poly (da, dg,2¥)

n

Sdpn(Nv k) - F(N7 k) <

o Convergence proof information-theoretic based on quantum de Finetti theorems
with linear constraints.
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SDPs for Quantum Optimization (continued)

@ General form quantum information [B. et al. arXiv:1810.12197]:
F(G,/\, F,X, Y) = maxli/vmize TI'[GAB(WA ® WB)J
subject to W,y =0, Wg >0, TI‘(WA) = TI"(WB) =1
Aascy (Wa) = Xc,s Teocg (We) = Yo,

where Gyp is a matrix, Aa_,c, and 'g_, ¢, are linear maps and Xc, and Y, are
fixed matrices defining affine subspaces.

e Approximating F(G,A,T, X, Y) or already F(N/, k) encodes so-called quantum
separability problem = strong hardness results [Gharibian '10] [Harrow et al. '19]
and slow convergence is expected (versus classical setting!).

Ongoing work:

Identify settings in quantum information that allow for faster analytical convergence,
e.g., classical-quantum channels — other methods via e-nets / polynomials needed.
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Certifying Optimality

Rank loop conditions:

We give sufficient condition for exact convergence F(N, k) = sdp, (N, k) but this
requires finding low-rank SDP solutions via rank minimization heuristics [Fazel '02].

o Example numerics: Uniform noise modelled by qubit depolarizing channel
NDep(p) : WJ><¢| + p - Uniform; + (1 - P) ' |1/)><¢| with p € [07 4/3]

= What is the optimal quantum code for storing k = 1 qubit in N = 5 noisy
qubits:

(N®5 ) =7

Dep(p

o Analytical [Bennett et al. '96] as well as numerical see-saw type [Reimpell &
Werner '05] lower bounds available, what about upper bounds? Our work gives

sdp, <N§e5p ) =P (N]?fp(m, 2> ’
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Preliminary Numerics

o Exploiting symmetries for analytical dimension reduction, we calculated the first

level sdp,, (/\/'gfp(p 2) as an upper bound on p (./\/'gfp (0)’ ) in MATLAB using

CVX and MOSEK:
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@ For p € [1,4/3] the codes from [Reimpell & Werner '05] are optimal — for
p € [0,0.18] there is room to look for improved codes.
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Conclusion

Take home message:

Methods form optimization theory for quantifying the difference between classical and
quantum problems in information processing.

@ Relevant bilinear programs in general hard but approximated via
non-commutative sum-of-squares hierarchies.

o Analytical question: Identify operational settings in quantum information that
allow for efficient approximation. For example, free games / quantum adversaries
in classical cryptography / classical-quantum channel coding?

@ Numerical question: Dimension reduction tools exploiting symmetries needed
(group theory) = extensive numerics for quantum channel coding practically
relevant for NISQ technology.

@ Multilinear / multipartite extensions?

Thanks!

[SIAM Journal on Optimization '16] with Fawzi and Scholz
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