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Abstract—We establish a converse bounds on the private
transmission capabilities of a quantum channel. The main
conceptual development builds firmly on the notion of a
private state, which is a powerful, uniquely quantum method
for simplifying the tripartite picture of privacy involving local
operations and public classical communication to a bipartite
picture of quantum privacy involving local operations and
classical communication. This approach has previously led
to some of the strongest upper bounds on secret key rates,
including the squashed entanglement and the relative entropy
of entanglement. Here we use this approach along with a
“privacy test” to establish a general meta-converse bound
for private communication.

I. INTRODUCTION

Ever since the discovery of quantum key distribu-
tion [3], researchers have been interested in exploiting
quantum-mechanical effects in order to ensure the secrecy
of communication. This has led to a large amount of
research in many directions [21], both experimental and
theoretical, and one of the recent challenges has been to
connect both of these directions.

On the theoretical side, much progress has been made
by generalizing several ideas developed in the context
of classical information theory. For example, the wiretap
channel is a simple model for private communication, and
one can study its capacity for secure data transmission
[33]. In this model, two honest parties, usually called
Alice (the sender) and Bob (the receiver), are connected
by a classical channel. At the same time, there is a
classical channel connecting Alice to an eavesdropper or
wiretapper, usually called Eve. The goal is to devise a
communication scheme such that Alice can communicate
to Bob with small error in such a way that Eve gets
nearly zero information about the message communicated
(with both the probability of error and information leakage
vanishing in the limit of many channel uses). One can
further generalize the model to allow for public classical
communication and study capacities in this context [1],
[17]. However, two major drawbacks of the wiretap model
is that the honest parties need to assume that they have
fully characterized both 1) their channel and 2) the channel
to the eavesdropper, which may not be possible in practice.
Nevertheless, techniques developed in the context of the
wiretap channel have been foundational to our understand-
ing of information-theoretically secure communication.

Quantum mechanics offers a route around one of the
aforementioned problems with the classical model, via the

notion of purification. Indeed, for any quantum channel
connecting Alice to Bob, there is a purification (or isomet-
ric extension) of this channel that is unique up to unitary
rotations. All the degrees of freedom that are not accessible
to the receiver Bob are accessible to the environment of the
channel, and in the spirit of being cautious, as is usually
the case in cryptography, we assume that the eavesdropper
has full access to the environmental system. For example,
communication from Alice to Bob in free space can be
modeled by an interaction at a beamsplitter [22], and in
the wiretap model, we assume that all of the light that is
lost along the way can be collected by the eavesdropper
Eve [10]. Thus, in the quantum wiretap model, Alice and
Bob can perform parameter estimation to characterize their
channel, and once they have a complete characterization,
they also have a model for the channel to the eavesdropper,
circumventing one of the aforementioned problems with
the classical model. If we allow for Alice and Bob to make
use of public classical communication in addition to the
quantum channel (see, e.g., [27], [28]), then this model
is closely related to that which is used in some quantum
key distribution protocols. In practice, one drawback of
this model is that the channel from Alice to Bob might
be changing with time or difficult to characterize, but
nevertheless one can study the private capacities of this
quantum wiretap channel model in an attempt to gain
some understanding of what rates might be achievable in
principle.

With this Shannon-theoretic viewpoint, the quantum
wiretap model has been studied in much detail. The private
capacity of a quantum wiretap channel was defined and
characterized in [7], [8]. For the class of degradable
quantum channels, there is a tractable formula for the
private capacity [23]. Beyond such channels, little is
known and recent evidence suggests that characterizing
private capacity effectively is challenging [9], [16], [24].

More recently there has been progress on characterizing
the private capacity when public classical communication
is available (for a given channel N , let P↔(N ) denote
this quantity). The authors of [28] defined the squashed
entanglement of a channel and showed that it is an upper
bound on P↔(N ) for any channel N . This result thus
established a strong limitation for quantum key distribution
protocols as discussed in [27]. Following this development,
by building on the notion of relative entropy of entan-
glement and the fact that this quantity is also an upper



bound on the distillable key of a bipartite state [13], [14],
the authors of [20] defined a channel’s relative entropy
of entanglement and showed that it is an upper bound
on P↔(N ) for any channel N that has a “teleportation
symmetry” identified in [4, Section V] and extended in
[19], [20]. It is an open question to determine whether the
relative entropy of entanglement is an upper bound on the
two-way assisted private capacity of a general quantum
channel.

Both of the aforementioned upper bounds on P↔(N )
critically rely upon the notion of a private state [13], [14].
To motivate this notion, consider that the ultimate goal of
a P↔ protocol is to generate a secret-key state of the form

(MA ⊗MB) (γABE) =
1

K

K−1∑
i=0

|i〉〈i|A ⊗ |i〉〈i|B ⊗ σE ,

(1)
where the A system is possessed by Alice, B by Bob,
and E by the eavesdropper, γABE is some state on
systems ABE, M(·) =

∑
i |i〉〈i|(·)|i〉〈i| is a projective

measurement channel, and σE is some state on system
E. The state in (1) is such that the systems A and B
are perfectly correlated (i.e., maximally classically corre-
lated), and the value of the key is uniformly random and
independent of Eve’s system E. The main observation
of [13], [14] is that, in principle, every step of a P↔

protocol can be purified, and since these steps are con-
ducted in the laboratories of Alice and Bob, these parties
could possess purifying systems of γABE (call them A′

and B′), such that γABA′B′E is a pure state satisfying
TrA′B′{γABA′B′E} = γABE . By employing purification
theorems of quantum information theory, the authors of
[13], [14] showed that the reduced state of γABA′B′E on
the systems ABA′B′ has the following form:

γABA′B′ = UABA′B′(ΦAB ⊗ θA′B′)U†ABA′B′ , (2)

where ΦAB is a maximally entangled state, UABA′B′ is
a special kind of unitary called a “twisting,” and θA′B′ is
an arbitrary state (see Section II for more details). Such a
state is now known as a bipartite private state and is fully
equivalent to the state in (1) in the aforementioned sense.
This observation thus allows for a perspective change
which is helpful for analyzing private communication
protocols: one can eliminate the eavesdropper from the
analysis, revising the goal of such a protocol to be the
production of states of the form in (2), and this allows for
using the powerful tools of entanglement theory [15] to
analyze secret-key rates.

Not only did the results of [13], [14] provide a con-
ceptually different method for understanding privacy in
the quantum setup, but they also showed how there are
fundamental differences between entanglement distillation
and secret-key distillation protocols. Indeed, the strongest
demonstration of this difference was the realization that
there exist quantum channels that have zero capacity to
send quantum information and yet can generate private
information at a non-zero rate [11], [12]. This in turn led to
the discovery of the superactivation effect [25], [26]: two
quantum channels each having zero quantum capacity can
be used together to have a non-zero quantum capacity, by

taking advantage of the intricate interplay between privacy
and coherence.

In all of the above theoretical analyses, the statements
made are asymptotic in nature, applying exclusively to
the situation in which a large number of independent and
identical channel uses are available. While these works
have provided interesting bounds and are conceptually
rich, they are somewhat removed from practical situations
in which the number of channel uses is limited. However,
some recent works have aimed to bridge this gap for
the case of quantum communication [2], [6], [18], [29],
[30], giving more refined bounds on what is possible and
impossible for a limited number of channel uses. One
goal of the present paper is to bridge the gap for private
communication.

II. PRIVATE STATES

We use standard notation and assume knowledge of
basic concepts in quantum information theory. Private
states [13], [14] are an essential ingredient of our devel-
opment, and we review their basics here.

Definition 1. A tripartite key state γABE ∈ D(HABE)
contains logK bits of secret key if there exists a state σE ∈
D(HE) and a projective measurement channels MA and
MB such that (1) holds.

That is, we see that the systems A and B are maximally
classically correlated, and the key value is uniformly
random and independent of the E system. Physically, we
can think of the A system as being in Alice’s laboratory, B
in Bob’s, and E in Eve’s. We also think of Alice and Bob
as two honest parties and Eve as a malicious eavesdropper
whose system should ideally be independent of the key
systems possessed by Alice and Bob.

Purifying such a state γABE with two systems A′ and
B′, thinking of A′ as being available to Alice and B′

as being available to Bob (or alternatively as not being
available to Eve), and tracing out the E system then leads
to the notion of a bipartite private state γABA′B′ [13],
[14]. As shown in [13], [14], any such state γABA′B′ ∈
D(HABA′B′) takes a canonical form:

Definition 2. A bipartite private state γA′′B′′ ∈
D(HA′′B′′) contains logK bits of secret key if HA′′ =
HA ⊗HA′ and HB′′ = HB ⊗HB′ such that γABA′B′ ∈
D(HABA′B′) has the form (2) where UABA′B′ is a
“twisting” unitary of the form

UABA′B′ =

K−1∑
i,j=0

|i〉〈i|A ⊗ |j〉〈j|B ⊗ U ijA′B′ , (3)

with each U ijA′B′ a unitary, and θA′B′ ∈ D(HA′B′).

The systems A′ and B′ are called the “shield” systems
because they, along with the twisting unitary, can help to
protect the key in systems A and B from any party pos-
sessing a purification of γABA′B′ . Such bipartite private
states are in one-to-one correspondence with the tripartite
key states given in (1) [13], [14]. That is, for every state
γABE of the form in (1), we can find a state of the form
in (2) and vice versa. We summarize this as the following
proposition [13], [14]:



Proposition 3. Bipartite private states and tripartite key
states are equivalent. That is, for γABA′B′ a bipartite
private state, γABE is a tripartite key state for any
purification γABA′B′E of γABA′B′ . Conversely, for any
tripartite key state γABE and any purification γABA′B′E

of it, γABA′B′ is a bipartite private state.

This correspondence takes on a more physical form
(reviewed in Section III), which is that any tripartite
protocol whose aim it is to extract tripartite key states
of the form in (1) is in one-to-one correspondence with
a bipartite protocol whose aim it is to extract bipartite
private states of the form in (2) [13], [14].

Definition 4. A state ρABE ∈ D(HABE) is an ε-
approximate tripartite key state if there exists a tripartite
key state γABE of the form in (1) such that

F (ρABE , γABE) ≥ 1− ε, (4)

where ε ∈ [0, 1]. Similarly, a state ρABA′B′ ∈
D(HABA′B′) is an ε-approximate bipartite private state
if there exists a bipartite private state γABA′B′ ∈
D(HABA′B′) of the form in (2) such that

F (ρABA′B′ , γABA′B′) ≥ 1− ε. (5)

Approximate tripartite key states are in one-to-one cor-
respondence with approximate bipartite private states [14,
Theorem 5], as summarized below:

Proposition 5. If ρABA′B′ is an ε-approximate bipartite
key state with K key values, then Alice and Bob hold an
ε-approximate tripartite key state with K key values. The
converse statement is true as well.

III. PRIVATE CLASSICAL COMMUNICATION OVER
QUANTUM CHANNELS

In this section, we define secret-key transmission codes
and measures of their performance. We also review the
identification from [13], [14], which shows how a tripartite
key distillation protocol is in one-to-one correspondence
with a bipartite private state distillation protocol.

A. Secret-key transmission codes

Given is a quantum channelNA′→B . LetN⊗nA′→B denote
the tensor-product channel, UNA′→BE an isometric exten-
sion of NA′→B , and UNA′→BE the associated isometric
channel. A secret-key transmission protocol for n channel
uses consists of a triple {|K| , E ,D}, where |K| is the size
of the secret key to be transmitted, EK′→A′n is the encoder
(a completely positive trace-preserving (CPTP) map), and
DBn→K̂ is the decoder (another CPTP map). The protocol
begins with a third party preparing a maximally classically
correlated state ΦKK′ of the following form:

ΦKK′ ≡ 1

|K|

|K|−1∑
i=0

|i〉〈i|K ⊗ |i〉〈i|K′ , (6)

and then sending the K ′ system to Alice. Alice then inputs
the K ′ system to an encoder EK′→A′n , transmits the A′n

systems through the tensor-power channel (UNA′→BE)⊗n,

and the receiver Bob applies the decoder DBn→K̂ to the
systems Bn. The state at the end of the protocol is

ρKK̂En ≡ (DBn→K̂ ◦ (UNA′→BE)⊗n ◦ EK′→A′n)(ΦKK′).
(7)

A triple (n, P, ε) consists of the number n of channel
uses, the rate P of secret-key transmission, and the error
ε ∈ [0, 1]. Such a triple is achievable on NA′→B if there
exists a secret-key transmission protocol {|K| , E ,D} and
some state ωEn ∈ D(HEn) such that 1

n log |K| ≥ P and

F (ΦKK̂ ⊗ ωEn , ρKK̂En) ≥ 1− ε, (8)

where

ρKK̂En ≡ (DBn→K̂ ◦ (UNA′→BE)⊗n ◦ EK′→A′n)(ΦKK′).
(9)

Thus, the goal of such a secret-key transmission protocol
is to realize an ε-approximate tripartite secret-key state
as defined in (4). Note that this definition of secret-
key transmission combines the error probability and the
security parameter into a single parameter ε, in contrast
to the other definitions in the literature. Doing so turns
out to be beneficial for the developments in this paper.
We compare different definitions in the full version [32].

As mentioned before Definition 4, it is possible to purify
a secret-key transmission protocol [13], [14], such that
every step is performed coherently and the ultimate goal
is to produce a private bipartite state γKAKBSASB

, where
we now denote the key systems by K and the shield
systems by S. In the class of protocols discussed above,
this consists of replacing each step with the following:

1) A third party preparing a purification of the state
ΦKK′ , which is a “GHZ state” that we denote by
|ΦGHZ〉KK′M ≡ |K|−1/2

∑
i |i〉K ⊗ |i〉K′ ⊗ |i〉M ,

and giving the K ′ system to Alice,
2) Alice performing an isometric extension of the en-

coder EK′→A′n , denoted by UEK′→A′nA′′ ,
3) Bob performing an isometric extension of the de-

coder DBn→K̂ , denoted by UD
Bn→K̂B′′ .

By employing [14, Theorem 5], we find that (8) implies

F (γKAKBSASB
, ρKK̂MA′′B′′) ≥ 1− ε, (10)

for some private state γKAKBSASB
, where we make the

identifications KA ≡ KB ≡ K, SA ≡ MA′′, SB ≡ B′′,
and

ρKK̂MA′′B′′ ≡ (UD
Bn→K̂B′′ ◦ (UNA′→BE)⊗n◦

UEK′→A′nA′′)(ΦGHZ
KK′M ). (11)

B. Non-asymptotic achievable regions

The non-asymptotic private achievable region of a quan-
tum channel is the union of all achievable triples (n, P, ε),
and we are interested in understanding its boundary:

P̂N (n, ε) ≡ max {P : (n, P, ε) achievable on N} .
(12)

This identifies how the rate can change as a function of
n for fixed error ε, and second-order coding rates can
characterize this boundary for sufficiently large n.



IV. META-CONVERSE BOUND

A. Information measures

The general meta-converse bound in Section IV-B is
given in terms of the following quantity, defined for ρ ∈
D(H), σ ∈ L+(H), and ε ∈ [0, 1] as

Dε
H(ρ‖σ) ≡ − log

[
min{Tr{Λσ} :

0 ≤ Λ ≤ I ∧ Tr{Λρ} ≥ 1− ε}
]
. (13)

If σ is a quantum state, Dε
H(ρ‖σ) has an interpretation as

the optimal exponent of the Type II error in a hypothesis
test to distinguish ρ from σ, given the constraint that the
Type I error should not exceed ε. It is monotone non-
increasing with respect to quantum channels. From this
quantity follows an information measure [5, Definition 4]
closely related to the relative entropy of entanglement [31]:

EεR(A;B)ρ ≡ inf
σAB∈S(A:B)

Dε
H(ρAB‖σAB), (14)

where S(A : B) denotes the set of separable states.
This quantity is an LOCC (local operations and classical
communication) monotone, meaning that

EεR(A;B)ρ ≥ EεR(A′;B′)ω, (15)

for ωA′B′ ≡ ΛAB→A′B′(ρAB), with ΛAB→A′B′ an LOCC
channel. This follows because the underlying quantity Dε

H

is monotone non-increasing with respect to quantum chan-
nels and the set of separable states is closed under LOCC
channels. More generally, EεR(A;B)ρ is monotone non-
increasing with respect to separability-preserving channels
for the same reasons. We can extend the definition in (14)
to be a function of a quantum channel NA′→B :

EεR(N ) ≡ sup
|ψ〉AA′∈HAA′

EεR(A;B)ρ, (16)

where ρAB ≡ NA′→B(ψAA′). Note that it suffices to per-
form the optimization with respect to pure states due to the
fact that Dε

H satisfies the data processing inequality. The
quantity EεR(N ) will play an important role in establishing
upper bounds on the private transmission capabilities of a
quantum channel.

B. Privacy test

Here we define a “privacy test” as a method for testing
whether a given bipartite state is private. In some sense,
this notion is already implicit in the developments of [14,
Eqns. (282)–(284)] and stated even more explicitly in [11],
[12]. We state the notion here concretely for completeness.

Definition 6 (Privacy test). Let γABA′B′ ∈ D(HABA′B′)
be a bipartite private state as given in Definition 2. A
privacy test corresponding to γABA′B′ (a γ-privacy test)
is defined as the following dichotomic measurement:

{ΠABA′B′ , IABA′B′ −ΠABA′B′} , (17)

where ΠABA′B′ ≡ UABA′B′ (ΦAB ⊗ IA′B′)U†ABA′B′

and UABA′B′ is the unitary specified in (3).

If one has access to the systems ABA′B′ of a bipartite
state ρABA′B′ and has a description of γABA′B′ satisfying
(5), then the γ-privacy test decides whether ρABA′B′ is a
private state with respect to γABA′B′ . The first outcome
corresponds to the decision “yes, it is a γ-private state,”

and the second outcome corresponds to “no.” Physically,
this test is just untwisting the purported private state and
projecting onto a maximally entangled state. The following
lemma states that the probability for an ε-approximate
bipartite private state to pass the γ-privacy test is high:

Lemma 7. Let ε ∈ [0, 1] and let ρABA′B′ ∈ D(HABA′B′)
be an ε-approximate private state as given in Definition 4,
with γABA′B′ satisfying (5). The probability for ρABA′B′

to pass the γ-privacy test is never smaller than 1− ε:

Tr{ΠABA′B′ρABA′B′} ≥ 1− ε, (18)

where ΠABA′B′ is defined as above.

Proof. See full version [32].

On the other hand, we have the following property of
separable states [14, Eqns. (282)–(284)]:

Lemma 8 ( [14, Eqn. (281)]). For a separable state
σABA′B′ ∈ S(AA′ :BB′), the probability of passing any
γ-privacy test is never larger than 1/K:

Tr{ΠABA′B′σABA′B′} ≤ 1

K
, (19)

where K is the number of values that the secret key can
take (i.e., K = dim(HA) = dim(HB)).

The bounds in (18) and (19) are the core ones underly-
ing our meta-converse bound.

We now establish a general bound on the achievable
region discussed in Section III-B.

Theorem 9. Let NA′→B be a quantum channel. Then for
any fixed ε ∈ (0, 1), the achievable region satisfies

P̂N (1, ε) ≤ EεR(N ). (20)

Proof. Consider any protocol which achieves a rate
P̂N (1, ε) ≡ P̂ , formulated in the bipartite picture as
discussed in the previous section. Let ωA0A′B0

∈ S(A0A
′ :

B0) denote the separable state shared by Alice and Bob at
the beginning of the protocol. The A′ system of this state
gets sent through the channel NA′→B , leading to the state

θA0BB0
≡ NA′→B(ωA0A′B0

). (21)

Alice and Bob apply a decoder DA0BB0→KAKBSASB
,

leading to the state

ωKAKBSASB
≡ DA0BB0→KAKBSASB

(θA0BB0
). (22)

By assumption we have that

F (γKAKBSASB
, ωKAKBSASB

) ≥ 1− ε, (23)

for some private state γKAKBSASB
. By Lemma 7, there is

a projector ΠKAKBSASB
corresponding to a privacy test

of the form in Definition 6, such that

Tr{ΠKAKBSASB
ωKAKBSASB

} ≥ 1− ε. (24)

From Lemma 8, we have that

Tr{ΠKAKBSASB
σKAKBSASB

} ≤ 2−P̂ , (25)

for any separable state σKAKBSASB
∈ S(KASA :KBSB).

Thus, this test is feasible for Dε
H(ω‖σ) and we find that

P̂ ≤ Dε
H(ωKAKBSASB

‖σKAKBSASB
) (26)



for any separable state σKAKBSASB
∈ S(KASA :KBSB).

Let τA0B ∈ S(A0 :B). From the quasi-convexity of Dε
H

we find that there exist pure states ψA0A′ and ϕB0 such
that

Dε
H(NA′→B(ψA0A′)‖τA0B)

= Dε
H(NA′→B(ψA0A′)⊗ ϕB0‖τA0B ⊗ ϕB0) (27)

≥ Dε
H(NA′→B(ωA0A′B0)‖τA0B ⊗ ϕB0) (28)

≥ Dε
H(ωKAKBSASB

‖σKAKBSASB
) ≥ P̂ , (29)

where σKAKBSASB
= DA0BB0→KAKBSASB

(τA0B ⊗
ϕB0). The first equality follows because Dε

H is invari-
ant with respect to tensoring in the same state on an
extra system (doing so does not change the constrained
Type II error in a quantum hypothesis test). The first
inequality follows from quasi-convexity of Dε

H . The sec-
ond inequality follows from the monotonicity of Dε

H

with respect to quantum channels. Since the decoder
DA0BB0→KAKBSASB

is an LOCC channel, we can con-
clude that σKAKBSASB

∈ S(KASA : KBSB). The final
inequality follows from (26). Since the inequality holds
for any choice τA0B ∈ S(A0 :B), we conclude that

EεR(NA′→B(ψA0A′)) ≥ P̂ . (30)

Optimizing over all input states ψA0A′ , we can conclude
the statement of the proposition.

The above theorem immediately leads to the following
bound for any quantum channel N :

P̂N (n, ε) ≤ 1

n
EεR(N⊗n). (31)

In the full version [32] we use the meta-converse and
prior developments in [30] to prove that a channel’s
relative entropy of entanglement is a strong converse rate
for private communication. This strengthens [20], which
asserts that the channel’s relative entropy of entanglement
is an upper bound on the private capacity. We also establish
strong converse rates for all phase-insensitive bosonic
channels and find that the pure-loss and quantum-limited
amplifier channels satisfy the strong converse property. Fi-
nally, we derive tight second-order converse bounds from
this expression for channels with sufficient symmetry.
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