Quantum Computing CO484

Tutorial*

Sheet 4–Questions

Exercise 1 Consider Grover's algorithm (as in the lecture notes).

(i) Show that

$$(2 |\psi\rangle \langle \psi| - \mathbf{I}) (\sum_{x} \alpha_{x} |x\rangle) = \sum_{x} (-\alpha_{x} + 2 \langle \alpha \rangle) |x\rangle$$

where $\langle \alpha \rangle = \frac{1}{N} \sum_{x} \alpha_{x}$.

(ii) Explain why the operation $2 |\psi\rangle \langle \psi| - \mathbf{I}$ in Grover's algorithm is called inversion about mean.

Exercise 2 Show that, in Grover's algorithm, the action of $2 |\psi\rangle \langle \psi| - \mathbf{I}$ is a reflection about $|\psi\rangle$.

Exercise 3 Show that if we change the computational basis so that $|\sigma\rangle$ and $|\tau\rangle$ are basis elements, then the matrix representation of the Grover's transform G will be;

$$G_{\sigma,\tau} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

where $\theta/2$ is the angle between $|\sigma\rangle$ and $|\psi\rangle$.

Exercise 4 * We have shown in the lecture that a quantum computer can search N items, consulting the black box that can access the database and tells you if an item is marked only $O(\sqrt{N})$ times. We now prove that no quantum algorithm can perform this task using fewer than $\Omega(\sqrt{N})$ accesses to the black box. Suppose the algorithm starts in the state $|\phi\rangle$. To determine

^{*}Partly based on the tutorials by Abbas Edalat and Herbert Wiklicky.

the marked x we are allowed to apply a black box Q_x , which gives a phase shift of -1 to the solution $|x\rangle$ and leaves all other states invariant, i.e.,

$$Q_x = 1 - 2|x\rangle\langle x|.$$

We suppose the algorithm applies Q_x exactly k-times, with unitary operations U_1, U_2, \ldots, U_k interleaved between the black box operations. Define

$$|\phi_k^x
angle = U_k Q_x U_{k-1} Q_x \dots U_1 Q_x |\phi
angle, \quad |\phi_k
angle = U_k U_{k-1} \dots U_1 |\phi
angle,$$

and let $|\phi_0\rangle = |\phi\rangle$. Our goal is then to bound the quantity

$$D_k = \sum_x \|\phi_k^x - \phi_k\|^2$$

- (i) Show that D_k ≤ 4k².
 Hint: Do a proof by induction and employ the Cauchy-Schwarz inequality.
- (ii) Show that if the algorithm yields a solution with probability at least one-half, i.e., $|\langle x | \phi_k^x \rangle|^2 \ge 1/2$ for all x, then $D_k = \Omega(N)$. **Hint**: Employ the Cauchy-Schwarz inequality.
- (iii) Argue why this shows that Grover's algorithm is optimal.
- (iv) Discuss why this result is both exciting and disappointing.