Quantum Computing CO484

Tutorial*

Sheet 3 —Solutions

Exercise 1 In the quantum teleportation network of Figure 1, the measure-
ments of the first two qubits by Alice will collapse Bob’s qubit as follows:

00 = [¢3(00)) = «|0) + 3 [1)

01+ [¢5(01)) = a [1) + 310)
10 > [15(10)) = ]0) — B]1)
11— [5(11)) = a[1) - B[0)

Alice communicates her two bits mn with Bob over a classical channel. Bob
will then send his qubit through the circuit X™Z™ where

0 1 1 0
(Vo) 2=(0 5)
Check that the final result |1p4) is indeed the state |14) = |¢) = a|0) + 3 |1).

Solution

<)) ()= ()

*Partly based on the tutorials by Abbas Edalat and Herbert Wiklicky.
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Figure 1: Quantum teleportation

Exercise 2 Let be f:{0,1}" — {0,1} and U} : Crtl — € with

U [x,y) =[x,y © f(x)),

as depicted in Figure 2. Check that for n € N the operator U? s a unitary

transformation.
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Figure 2: A gate for parallel computation

Solution For each x = x7 - - - x,, we have the two possible input qubits ;0
and x;1, which correspond to two adjacent rows of U. The action of Uy on
the these two basis vectors is to either leave them unchanged or swap them.
Hence, the matrix Uy has the following two-by-two sub-matrix

(o 225 )



in the ;0 and ;1 row and column positions. Therefore, Uy induces a
permutation of basis vectors and is thus unitary.

Exercise 3 Show that

Hlz) = (=D ly)

H®n’X> — Z (71)[’47}’] ’y>

where [X,y] is the bitwise inner product of x and'y modulo 2.

Solution The first equality follows immediately by checking it for x = 0
and x = 1. As for the second, let x = 15 - - - x,,. Then by the first equality
we can write:

H\m—ji S () )

yie{ozl}

Therefore, we get
H®" |x) = ®H|xl> =
i=1
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ﬁyE{O,l}"

Exercise 4 *In order to distinguish a function f : {0,1}" — {0,1} from
constant to balanced with certainty, one needs at least 2"~ + 1 classical
queries. How many classical queries are sufficient for a success probability
of p > %? What does this tell you about the Deutsch-Jozsa problem?

Solution We can think of the Deutsch-Jozsa problem as follows. Alice
randomly chooses an element x from a set with cardinal number N = 2"
and sends it to Bob (for simplicity assume that IV is even). Bob then applies



a function f : M — {0, 1}, which is either constant or balanced. Afterwards
Bob tells Alice f(x). Classically Alice has to ask Bob N/2 4 1 times to
know for sure if Bob’s function is constant or balanced —in the worst case.
But if she only wants to know it with probability p € (%, 1), she can do the
following. Let k be the number of times that Alice asks Bob. If she gets
at least one 0 and at least one 1 she knows for sure that Bob’s function is
balanced. If she gets the same value k times, she guesses that Bob’s function
is constant. It follows from elementary combinatorics that the probability
that this strategy fails is given by

o = 200) 2015 (/2= i)
fail — N = P - .
(k) Hi:()l (N —1)
It follows that it is sufficient to choose k£ such that
k—1 o
—p> QHikzol(N/2 i)
Hi;O (N - l)

1

)

which is equivalent to

k—1 .
1 N —1
<§ —
tos <1—p> e log <N/2—i>

k—1 .

N —i N
Y log (o ) > k-log < ) =k
2% <N/2—2‘> =108 (N/Q) ’

it is sufficient to choose
1
k= {log () + 1—‘ .
I—p

Remarkably, this is independent of N. Of course for & > N/2 + 1 the
deterministic algorithm gives the answer with certainty. Note that we need
randomness to implement the probabilistic algorithm. That is, the Deutsch-
Jozsa problem is in BPP but not in P.

Notice that we can use a simpler strategy in order to compute the failure
probability in the regime & < N/2. In fact, in this regime all the possible
2% binary sequences of length k could be valid answers for Alice. Alice fails
only in the correspondence of two binary sequences of length k: 0...0 and
1...1. Hence, the error probability is

Now, since

2 -
prail = 1—p=p=2""

and the same conclusion as above holds.



