
Quantum Computing CO484

Tutorial∗

Sheet 3 – Solutions

Exercise 1 In the quantum teleportation network of Figure 1, the measure-
ments of the first two qubits by Alice will collapse Bob’s qubit as follows:

00 7→ |ψ3(00)〉 = α |0〉+ β |1〉

01 7→ |ψ3(01)〉 = α |1〉+ β |0〉

10 7→ |ψ3(10)〉 = α |0〉 − β |1〉

11 7→ |ψ3(11)〉 = α |1〉 − β |0〉
Alice communicates her two bits mn with Bob over a classical channel. Bob
will then send his qubit through the circuit XnZm where

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Check that the final result |ψ4〉 is indeed the state |ψ4〉 = |ψ〉 = α |0〉+ β |1〉.

Solution

Z0X0

(
α
β

)
=

(
α
β

)

Z0X1

(
β
α

)
= X

(
β
α

)
=

(
α
β

)

Z1X0

(
α
−β

)
Z

(
α
−β

)
=

(
α
β

)

Z1X1

(
−β
α

)
=

(
0 1
−1 0

)(
−β
α

)
=

(
α
β

)
∗Partly based on the tutorials by Abbas Edalat and Herbert Wiklicky.

1



|0B〉

|0A〉

|ψA〉
µ1

µ2
H

H

|ψB〉Xµ2 Zµ1

|φ0〉 |φ1〉 |φ2〉 |φ3〉 |φ4〉

Figure 1: Quantum teleportation

Exercise 2 Let be f : {0, 1}n → {0, 1} and Un
f : Cn+1 → Cn+1 with

Un
f : |x, y〉 7→ |x, y ⊕ f(x)〉 ,

as depicted in Figure 2. Check that for n ∈ N the operator Un
f is a unitary

transformation.

|x〉 |x〉

|y〉 y ⊕ |x〉

n n

Un
f

Figure 2: A gate for parallel computation

Solution For each x = x1 · · ·xn we have the two possible input qubits xi0
and xi1, which correspond to two adjacent rows of Uf . The action of Uf on
the these two basis vectors is to either leave them unchanged or swap them.
Hence, the matrix Uf has the following two-by-two sub-matrix(

1− f(x) f(x)
f(x) 1− f(x)

)
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in the xi0 and xi1 row and column positions. Therefore, Uf induces a
permutation of basis vectors and is thus unitary.

Exercise 3 Show that

H |x〉 =
1√
2

∑
y∈{0,1}

(−1)xy |y〉

H⊗n |x〉 =
1√
2n

∑
y∈{0,1}n

(−1)[x,y] |y〉

where [x,y] is the bitwise inner product of x and y modulo 2.

Solution The first equality follows immediately by checking it for x = 0
and x = 1. As for the second, let x = x1x2 · · ·xn. Then by the first equality
we can write:

H |xi〉 =
1√
2

∑
yi∈{0,1}

(−1)xiyi |yi〉

Therefore, we get

H
⊗
n |x〉 =

n⊗
i=1

H |xi〉 =

=

n⊗
i=1

1√
2

∑
yi∈{0,1}

(−1)xiyi |yi〉 =

=
∑

y∈{0,1}n

1√
2n

(−1)
∑n

i=1 xiyi |y〉 =

=
1√
2n

∑
y∈{0,1}n

(−1)[x,y] |y〉 .

Exercise 4 *In order to distinguish a function f : {0, 1}n → {0, 1} from
constant to balanced with certainty, one needs at least 2n−1 + 1 classical
queries. How many classical queries are sufficient for a success probability
of p > 1

2? What does this tell you about the Deutsch-Jozsa problem?

Solution We can think of the Deutsch-Jozsa problem as follows. Alice
randomly chooses an element x from a set with cardinal number N = 2n

and sends it to Bob (for simplicity assume that N is even). Bob then applies
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a function f : M → {0, 1}, which is either constant or balanced. Afterwards
Bob tells Alice f(x). Classically Alice has to ask Bob N/2 + 1 times to
know for sure if Bob’s function is constant or balanced — in the worst case.
But if she only wants to know it with probability p ∈ (12 , 1), she can do the
following. Let k be the number of times that Alice asks Bob. If she gets
at least one 0 and at least one 1 she knows for sure that Bob’s function is
balanced. If she gets the same value k times, she guesses that Bob’s function
is constant. It follows from elementary combinatorics that the probability
that this strategy fails is given by

pfail =
2
(N/2
k

)(
N
k

) =
2
∏k−1
i=0 (N/2− i)∏k−1
i=0 (N − i)

.

It follows that it is sufficient to choose k such that

1− p ≥
2
∏k−1
i=0 (N/2− i)∏k−1
i=0 (N − i)

,

which is equivalent to

log

(
1

1− p

)
≤

k−1∑
i=0

log

(
N − i
N/2− i

)
− 1.

Now, since

k−1∑
i=0

log

(
N − i
N/2− i

)
≥ k · log

(
N

N/2

)
= k ,

it is sufficient to choose

k =

⌈
log

(
1

1− p

)
+ 1

⌉
.

Remarkably, this is independent of N . Of course for k ≥ N/2 + 1 the
deterministic algorithm gives the answer with certainty. Note that we need
randomness to implement the probabilistic algorithm. That is, the Deutsch-
Jozsa problem is in BPP but not in P.

Notice that we can use a simpler strategy in order to compute the failure
probability in the regime k ≤ N/2. In fact, in this regime all the possible
2k binary sequences of length k could be valid answers for Alice. Alice fails
only in the correspondence of two binary sequences of length k: 0 . . . 0 and
1 . . . 1. Hence, the error probability is

pfail = 1− p =
2

2k
= 21−k

and the same conclusion as above holds.
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