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Abstract—A Markov chain is a tripartite quantum state
ρABC where there exists a recovery map RB→BC such that
ρABC = RB→BC(ρAB). More generally, an approximate Markov
chain ρABC is a state whose distance to the closest recovered
state RB→BC(ρAB) is small. Recently it has been shown that
this distance can be bounded from above by the conditional
mutual information I(A : C|B)ρ of the state. We improve on
this connection by deriving the first bound that is tight in the
commutative case and features an explicit recovery map that only
depends on the reduced state ρBC . The key tool in our proof
is a multivariate extension of the Golden-Thompson inequality,
which allows us to extend logarithmic trace inequalities from two
to arbitrarily many matrices.

I. INTRODUCTION

A state ρABC on a tripartite quantum system A ⊗ B ⊗ C
forms a (quantum) Markov chain if it can be recovered from its
reduced state ρAB on A⊗B by a quantum operation RB→BC
from B to B ⊗ C, i.e.,

ρABC = RB→BC(ρAB) . (1)

An equivalent characterization of ρABC being a Markov chain
is that the conditional mutual information

I(A : C|B)ρ := H(AB)ρ+H(BC)ρ−H(B)ρ−H(ABC)ρ ,

is equal to zero [1]. Here H(A)ρ := −tr ρA log ρA denotes the
von Neumann entropy. In addition, for Markov chains ρABC
the recovery quantum operation can without loss of generality
be chosen as

TB→BC(·) := ρ
1
2

BC

(
ρ
− 1

2

B (·)ρ−
1
2

B ⊗ idC
)
ρ

1
2

BC , (2)

the Petz recovery or transpose map. The structure of Markov
chains has been studied in various works. In particular, it
has been shown that A and C can be viewed as indepen-
dent conditioned on B, for an operationally useful notion of
conditioning [2].

The idea of approximate quantum Markov chains became
a powerful concept with the recent breakthrough work in [3].
It was shown that for any state ρABC there exists a quantum
operation RB→BC (the recovery map) in the sense that

I(A : C|B)ρ ≥ − log sup
RB→BC

F
(
ρABC ,RB→BC(ρAB)

)
,

(3)

where the supremum is over trace-preserving completely pos-
itive maps from B to B ⊗ C. Here F (ω, ξ) :=

∥∥√ω√ξ∥∥2
1

denotes the fidelity and the right-hand side of (3) is also known
as minus the logarithm of the fidelity of recovery [4].

Inequality (3) is of interest for various reasons. First, it
strengthens the celebrated strong subadditivity of quantum
entropy (SSA) which states that I(A : C|B)ρ ≥ 0 [5].
(We note that F (ω, ξ) ∈ [0, 1] for quantum states ω and ξ.)
Second, (3) shows that states with small conditional mutual
information are approximately recoverable in the sense that
there exists a recovery map such that (1) holds approximately.
Such states are therefore called approximate quantum Markov
chains.

In the case that ρABC is a classical state, meaning that
ρABC and all its reduced states are diagonal in the same basis
and therefore commute, the lower bound for the conditional
mutual information given in (3) is not tight. To see this, we
rewrite the conditional mutual information as

I(A : C|B)ρ = D
(
ρABC‖ exp(log ρAB+log ρBC−log ρB)

)
in terms of the relative entropy defined as

D(ω‖ξ) := trω(logω − log ξ) if ω � ξ ,

and +∞ otherwise (where ω � ξ denotes that the support
of ω is contained in the support of ξ). This rewriting holds
for all states, but now only when ρABC is classical we have
exp(log ρAB + log ρBC − log ρB) = TB→BC(ρAB) for the
Petz recovery map TB→BC from (2) leading to [6]:

I(A : C|B)ρ = D
(
ρABC‖TB→BC(ρAB)

)
. (4)

It is well-known that D(ω‖ξ) ≥ − logF (ω, ξ) with strict
inequality in the generic case (see, e.g., [7]) and hence we
can conclude that (3) cannot be tight in the commutative case.
From this line of arguments we can also see the reason why
lower bounds on the conditional mutual information as in (3)
are difficult to prove: in general matrices do not commute and
the matrix exponential cannot just be taken apart.

The inequality (3) has been strengthened in different ways
and several alternative proofs have been developed [3], [8], [9],
[10], [11], [12], [13]. Here we improve on all these results by
showing that

I(A : C|B)ρ ≥ DM
(
ρABC

∥∥RB→BC(ρAB)) , (5)



for the rotated Petz recovery map

RB→BC(·)

:=

∫ ∞
−∞

dt β0(t) ρ
1+it
2

BC

(
ρ
− 1+it

2

B (·)ρ−
1−it

2

B ⊗ idC

)
ρ

1−it
2

BC ,

with β0 some fixed probability distribution on R (independent
of the other parameters) defined in (12), and DM the measured
relative entropy defined in (7). We refer to Prop. V.1 for a
precise statement and discussion.

Statements like (5) correspond to matrix trace inequalities,
or more specifically logarithmic trace inequalities. For our
proofs we use a recent multivariate extension of the Golden-
Thompson matrix trace inequality [14], [15] to prove (5)
as well as other related logarithmic trace inequalities. Our
paper is structured as follows. We discuss multivariate trace
inequalities in Sec. III and IV, and in Sec. V we show how
these can be used to prove entropic inequalities such as (5).

II. PRELIMINARIES

A quantum state is a positive semi-definite matrix with trace
equal to one.

A. Schatten Norms

Let us define the Schatten p-norm of any matrix L as

‖L‖p :=
(
tr|L|p

) 1
p for p ≥ 1 ,

where |L| :=
√
L†L. We will also employ this expression for

0 < p < 1 although it is no longer a norm then. In the limit
p→∞ we recover the operator norm and for p = 1 we obtain
the trace norm. Schatten norms are functions of the singular
values and thus unitarily invariant. They satisfy ‖L‖p = ‖L†‖p
and ‖L‖22p = ‖LL†‖p = ‖L†L‖p.

B. Variational Formulas for Relative Entropies

The relative entropy can be expressed as the solution of a
convex optimization problem [16].

Lemma II.1. Let ρ and σ be positive definite matrices such
that trρ = 1. Then, we have

D(ρ‖σ) = sup
ω>0

trρ logω + 1− tr exp(log σ + logω) . (6)

This variational formula is often useful because the de-
pendence on ρ and σ is split up in two separate terms.
(To see why (6) is a convex optimization note that for A
positive definite logA becomes Hermitian, and that the set
of Hermitian matrices is convex. Furthermore the function
H1 7→ tr exp(H1 + H2) is convex on the set of Hermitian
matrices [17].)

The measured relative entropy is defined as [18], [19]

DM(ρ‖σ) := sup
(X ,M)

D
(
Pρ,M

∥∥Pσ,M) , (7)

where the optimization is over positive operator valued mea-
sures (POVMs) M on the power-set of a finite set X , the
probability mass functions are given by Pρ,M (x) = trρM(x),
and D(P‖Q) is the Kullback-Leibler divergence [20]. The data

processing inequality implies that DM(ρ‖σ) ≤ D(ρ‖σ) and
equality holds if and only if ρ and σ commute [21]. It is
further known that (see, e.g., [22])

DM(ρ‖σ) ≥ − logF (ρ, σ) . (8)

The measured relative entropy also features a variational
formula [21]

Lemma II.2. Let ρ and σ be positive definite matrices such
that trρ = 1. Then, we have

DM(ρ‖σ) = sup
ω>0

trρ logω + 1− trσω . (9)

III. MULTIVARIATE TRACE INEQUALITIES

Trace inequalities are mathematical relations between dif-
ferent multivariate trace functionals. Often these relations are
straightforward equalities if the involved matrices commute —
and are highly non-trivial to prove for the non-commuting
case. Arguably one of the best-known trace inequalities is the
Golden-Thompson (GT) inequality [23], [24]. It states that for
any two Hermitian matrices H1 and H2 we have

tr exp(H1 +H2) ≤ tr exp(H1) exp(H2) . (10)

We note that in case H1 and H2 commute, (10) holds with
equality (and only then). We also note that straightforward
extensions of this inequality to three matrices are incorrect
(see [14] for more explanations). However, recently the GT
inequality has been extended to arbitrarily many matrices [14],
[15].

Proposition III.1. Let p > 0, n ∈ N, and consider a collection
{Hk}nk=1 of Hermitian matrices. Then, we have

log

∥∥∥∥∥exp
(

n∑
k=1

Hk

)∥∥∥∥∥
p

≤
∫ ∞
−∞

dt β0(t) log

∥∥∥∥∥
n∏
k=1

exp
(
(1 + it)Hk

)∥∥∥∥∥
p

(11)

with the probability density

β0(t) :=
π

2

(
cosh(πt) + 1

)−1
on R . (12)

Note that the expression exp((1 + it)Hk) decomposes as
exp(Hk) exp(itHk), where the latter is a unitary rotation.
Since the Schatten p-norm is unitarily invariant, it follows
that the integrand in (11) is independent of t for n = 2.
Inequality (11) thus constitutes an n-matrix extension of the
GT inequality and further simplifies to (10) for n = 2 and
p = 2.

IV. LOGARITHMIC TRACE INEQUALITIES

The straightforward logarithmic analog of the GT inequality
is a relation between tr logA1A2 and tr logA1 + tr logA2

for A1, A2 positive definite matrices. As the determinant is
multiplicative and since tr logA1 = log detA1 we find that

tr logA1 + tr logA2 = tr logA
1
2
2 A1A

1
2
2 .



This trivially extends to n matrices. Another logarithmic trace
inequality states that for p > 0,

1

p
trA1 logA

p
2
1 A

p
2A

p
2
1 ≥ trA1(logA1 + logA2) (13)

≥ 1

p
trA1 logA

p
2
2 A

p
1A

p
2
2 , (14)

with equalities in the limit p→ 0 [25], [26]. Prop. III.1 implies
the following n-matrix extension of the lower bound in (14).

Proposition IV.1. Let q > 0, β0 as defined in (12), n ∈ N, and
consider a collection {Ak}nk=1 of positive definite matrices.
Then, we have
n∑
k=1

trA1 logAk ≥
∫ ∞
−∞

dt β0(t) ·

1

q
trA1 logA

q(1+it)
2

n · · ·A
q(1+it)

2
3 A

q
2
2 A

q
1A

q
2
2 A

q(1−it)
2

3 · · ·A
q(1−it)

2
n ,

with equality in the limit q → 0.

Proof. First, note that the statement that we aim to show is
invariant under multiplication of the matrices A1, A2, . . . , An
with positive scalars a1, a2, . . . , an > 0, and hence additional
constraints on the norms of the matrices can be introduced
without loss of generality.

Let us first show the inequality for q > 0, where we suppose
that trA1 = 1. By definition of the relative entropy we have

n∑
k=1

trA1 logAk

= D
(
A1

∥∥∥ exp( n∑
k=2

logA−1k

))
= sup
ω>0

trA1 logω + 1− tr exp
(
logω −

n∑
k=2

logAk

)
, (15)

where we used the variational formula for the relative entropy
given in Lem. II.1. Now note that the n-matrix extension of
the GT inequality (Prop. III.1) can for pHk = logBk and
p = 1

q be relaxed to

tr exp

(
n∑
k=1

logBk

)
≤
∫ ∞
−∞

dt β0(t)

× tr

(
B

q
2
n · · ·B

q(1+it)
2

3 B
q(1+it)

2
2 Bq1B

q(1−it)
2

2 B
q(1−it)

2
3 · · ·B

q
2
n

) 1
q

using the concavity of the logarithm and Jensen’s inequality.
Applying this to (15) we find

n∑
k=1

trA1 logAk

≥ sup
ω>0

{∫ ∞
−∞

dtβ0(t)trA1 logω+1−tr
(
A
− q

2
2 A

− q(1+it)
2

3 · · ·

A
− q(1+it)

2
n ωqA

− q(1−it)
2

n · · ·A−
q(1−it)

2
3 A

− q
2

2

) 1
q

}
. (16)

Now since

ω :=

(
A

q(1+it)
2

n · · ·A
q(1+it)

2
3 A

q
2
2 A

q
1A

q
2
2 A

q(1−it)
2

3 · · ·A
q(1−it)

2
n

) 1
q

is a positive definite matrix, we can insert this into (16), which
then proves the assertion for q > 0.

Next, we show that in the limit q → 0 the inequality
in Prop. IV.1 also holds in the opposite direction. For the
following we suppose that Ai ≥ 1 for all i ∈ {1, 2, . . . , n}.
We use that logX ≥ 1−X−1 for X > 0 and hence

trA1 logA
q(1+it)

2
n · · ·A

q
2
2 A

q
1A

q
2
2 · · ·A

q(1−it)
2

n

≥ trA1

(
1−A

−q(1−it)
2

n · · ·A−
q
2

2 A−q1 A
− q

2
2 · · ·A−

q(1+it)
2

n

)
︸ ︷︷ ︸

=:Zq(t)

.

By assumption on our matrices we have that A−1i ≤ 1 for all
i ∈ {1, 2, . . . , n} and thus Zq(t) ≥ 0 for all t ∈ R. By Fatou’s
lemma, we further find

lim inf
q→0

∫ ∞
−∞

dt β0(t)
Zq(t)

q
≥
∫ ∞
−∞

dt β0(t) lim inf
q→0

Zq(t)

q
.

Moreover, since Z0(t) ≡ 0 and

d

dq
Zq(t)

∣∣∣∣
q=0

=
n∑
k=1

trA1 logAk ,

for all t ∈ R, an application of l’Hôpital’s rule yields

lim inf
q→0

Zq(t)

q
=

n∑
k=1

trA1 logAk .

Since β0(t) is normalized this proves the assertion.

We note that there exist other trace inequalities that have
been extended to arbitrarily many matrices, such as the Araki-
Lieb-Thirring inequality. We refer the reader to [14], [15].

V. CONNECTION TO QUANTUM MARKOV CHAINS

As motivated in the introduction, we would like to obtain
a lower bound on the conditional mutual information —
strengthening (3). Logarithmic trace inequalities such as the
one given by Prop. IV.1 promise to give good bounds. (Note
that the left-hand side of the inequality in Prop. IV.1 for
n = 4 constitutes a conditional mutual information.) However,
a direct application of Prop. IV.1 is not strong enough and we
need to proceed slightly differently.

We first show an inequality that is more general than (3)
and covers the general problem of recoverability of quantum
information (see [11] for an extended discussion). The proof
is given in Section VI. We then explain how our bound can be
used to characterize (the special case of) approximate quantum
Markov chains.

Proposition V.1. Let ρ, σ be positive semi-definite matrices
such that ρ � σ, tr ρ = 1, and N be a trace-preserving
completely positive map acting on these matrices. Then, we
have

D(ρ‖σ)−D (N (ρ)‖N (σ)) ≥ DM (ρ‖Rσ,N ◦ N (ρ)) , (17)



with the rotated Petz recovery map given by

Rσ,N (·) :=
∫ ∞
−∞

dt β0(t)R[t]
σ,N (·) with

R[t]
σ,N (·) := σ

1+it
2 N †

(
N (σ)−

1+it
2 (·)N (σ)−

1−it
2

)
σ

1−it
2 .

We note that the recovery map in Rσ,N is explicit and
universal, i.e., independent of ρ. In addition, it perfectly
recovers σ from N (σ), that is

(Rσ,N ◦ N )(σ) = σ .

Let us explain how this can be used to understand the
entropic structure of approximate quantum Markov chains. If
we choose ρ := ρABC , σ := idA⊗ρBC , andN (·) = trC(·) we
immediately find a characterization of approximate quantum
Markov chains in terms of the conditional mutual information.

Corollary V.2. Let ρABC be a quantum state on A⊗B⊗C.
Then, we have

I(A : C|B)ρ ≥ DM
(
ρABC

∥∥RB→BC(ρAB)), (18)

with the rotated Petz recovery map given by

RB→BC(·) :=
∫ ∞
−∞

dt β0(t)R[t]
B→BC(·) with

R[t]
B→BC(·) := ρ

1+it
2

BC

(
ρ
− 1+it

2

B (·)ρ−
1−it

2

B ⊗ idC

)
ρ

1−it
2

BC .

The recovery map RB→BC is explicit, universal (i.e.,
it only depends on the reduced state ρBC), and satisfies
RB→BC(ρB) = ρBC . We note that (18) together with (8)
imply (3) which we set out to improve. In addition we know
from (4) that (18) is tight in the commutative case, since
the measured relative entropy then coincides with the relative
entropy and the recovery map RB→BC simplifies to the Petz
recovery map TB→BC from (2).

Cor. V.2 is the first lower bound on the conditional mutual
information in terms of recoverability that is tight in the
commutative case and has a recovery map that is explicit and
universal. We note that Prop. V.1 and Cor. V.2 are no longer
valid if we replace the measured relative entropy in (17) with
the relative entropy. This leads us to believe that (17) and (18)
cannot be further improved.

VI. PROOF OF PROP. V.1

We first prove Prop. V.1 for the special case where N is
a partial trace (see Lem. VI.1). This can then be lifted to the
full general statement.

Lemma VI.1. Let ρAB and σAB be positive semi-definite
matrices on A ⊗ B such that ρAB � σAB and tr ρAB = 1.
Then, we have

D(ρAB‖σAB)−D(ρA‖σA) ≥ DM
(
ρAB‖RσAB ,trB (ρA)

)
with the rotated Petz recovery map given by

RσAB ,trB (·) :=
∫ ∞
−∞

dt β0(t)R[t]
σAB ,trB (·) and

R[t]
σAB ,trB (·) := σ

1+it
2

AB

(
σ
− 1+it

2

A (·)σ−
1−it

2

A ⊗ idB

)
σ

1−it
2

AB .

Proof. Let us recall Prop. III.1 applied for n = 4 and p = 2.
Using the concavity of the logarithm and Jensen’s inequality,
this yields

tr exp(H1 +H2 +H3 +H4)

≤
∫ ∞
−∞

dtβ0(t) tr exp(H1) exp

(
1+it

2
H2

)
exp

(
1+it

2
H3

)
× exp(H4) exp

(
1−it
2

H3

)
exp

(
1−it
2

H2

)
(19)

for Hermitian matrices {Hk}4k=1. Moreover, by definition of
the relative entropy for positive definite operators ρAB and
σAB , we have

D(ρAB‖σAB)−D(ρA‖σA)
= D

(
ρAB‖ exp(log σAB + log ρA ⊗ idB − log σA ⊗ idB)

)
.

(20)

For positive semi-definite operators ρAB and σAB , the Her-
mitian operators log σAB , log ρA and log σA are well-defined
under the convention log 0 = 0. Under this convention, the
above (20) also holds for positive semi-definite operators as
long as ρAB � σAB , which is required by the proposition.
By the variational formula for the relative entropy (Lem. II.1)
we thus find

D(ρAB‖σAB)−D(ρA‖σA)
= sup
ωAB>0

tr ρAB logωAB + 1

− tr exp(log σAB+log ρA⊗idB−log σA⊗idB+logωAB)

≥ sup
ωAB>0

tr ρAB logωAB + 1

−
∫ ∞
−∞

dt β0(t) trσ
1+it
2

AB

(
σ
− 1+it

2

A ρAσ
− 1−it

2

A ⊗ idB

)
σ

1−it
2

AB ωAB

= DM

(
ρAB

∥∥∥∥∫ ∞
−∞
dtβ0(t)σ

1+it
2

AB

(
σ
− 1+it

2

A ρAσ
− 1−it

2

A ⊗ idB

)
σ

1−it
2

AB

)
where the single inequality follows by the four matrix ex-
tension of the GT inequality from (19). The final step uses
the variational formula from (9) for the measured relative
entropy.

Lem. VI.1 now readily implies our result about the con-
nection of quantum Markov chains to the conditional mutual
information (Prop. V.1) by means of Stinespring dilation.

Proof of Prop. V.1. Let us introduce the Stinespring dilation
of N , denoted U , and the states ρAB = UρU†, σAB =
UσU† such that N (ρ) = ρA and N (σ) = σB . Then, using
the fact that the relative entropy is invariant under isometries,
we have

D(ρ‖σ)−D (N (ρ)‖N (σ)) = D(ρAB‖σAB)−D(ρA‖σA)
≥ DM

(
ρAB‖RσAB ,trB (ρA)

)
= DM (ρ‖Rσ,N ◦ N (ρ)) ,



where the inequality is due to Lem. VI.1, and the last equality
uses again invariance under isometries and the fact that

U†R[t]
σAB ,trB (·)U

= U†Uσ
1+it
2 U†

(
N (σ)−

1+it
2 (·)N (σ)−

1−it
2 ⊗idB

)
Uσ

1−it
2 U†U

= σ
1+it
2 N †

(
N (σ)−

1+it
2 (·)N (σ)−

1−it
2

)
σ

1−it
2 = R[t]

σ,N (·) .

VII. CONCLUSION

As shown in the introduction, if a state ρABC is clas-
sical it is straightforward to see that I(A : C|B)ρ =
D
(
ρABC‖TB→BC(ρAB)

)
with the Petz recovery map TB→BC

from (2). Our corresponding inequality for the general, non-
commutative case is

I(A : C|B)ρ ≥ DM
(
ρABC‖RB→BC(ρAB)

)
(21)

with the rotated Petz recovery map RB→BC as given in
Cor. V.2. This result is of particular interest as it strengthens
the celebrated SSA of quantum entropy which has been vastly
useful in quantum information theory (see, e.g., [27]).

Moreover, it is natural to ask if there is also a relative
entropy distance type upper bound for the conditional mutual
information in terms of Markovianity for the non-commutative
case. To put it differently, (21) states that whenever the
conditional mutual information is small there exists a quantum
operation acting on the B-system only that recovers ρABC
well out of ρAB . The desired opposite statement would be that
whenever the conditional mutual information is large there is
no recovery map acting on B that recovers ρABC well from
ρAB . (See [28], [14], [12] for partial results.) A very related
question that remains open is if the logarithmic trace inequality
upper bound from (13) can be extended from two to arbitrarily
many matrices.
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