Semidefinite programming hierarchies for quantum-assisted coding

Mario Berta, Omar Fawzi, Volkher Scholz
based on
SIAM Journal on Optimization 26 (3), 1529 (2016)

Noisy channel coding

- Given noisy channel $W_{X \rightarrow Y}$ mapping X to Y with transition probability:

$$
W_{X \rightarrow Y}(y \mid x) \forall(x, y) \in X \times Y
$$

- The goal is to send k different messages using W while minimizing the error probability for decoding:

$$
\begin{array}{rll}
p_{\text {succ }}(W, k):= & \text { "bilinear optimisation" } \\
\text { subject to } & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) & \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{array}
$$

Noisy channel coding

$$
\begin{aligned}
& p_{\text {succ }}(W, k):=\underset{(e, d)}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) \\
& \text { subject to } \quad \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

compared to

- Shannon's asymptotic independent and identical distributed (iid) channel capacity:

Definition: $C(W):=\sup \left\{R \mid \forall \delta>0: \lim _{n \rightarrow \infty} p_{\text {succ }}\left(W^{\times n},[R(1-\delta)]^{n}\right)=1\right\}$

Answer: $\quad C(W)=\max _{P_{X}} I(X: Y)$ mutual information

Noisy channel coding

$$
\begin{aligned}
p_{\text {succ }}(W, k):=\underset{(e, d)}{\operatorname{maximize}} & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) \\
& \text { subject to } \\
& \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

compared to

- Shanmen's asymptotic independent and identical distributed (iid) channeLeapacity:

Quantum-assisted channel coding

$$
\begin{aligned}
p_{\text {succ }}^{*}(W, k):=\underset{(\mathcal{H}, \psi, E, D)}{\operatorname{maximize}} \quad & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x)\langle\psi| E(x \mid i) \otimes D(i \mid y)|\psi\rangle \text { "quantum bilinear optimisation" } \\
& \text { subject to } \quad \\
& \sum_{x} E(x \mid i)=1_{\mathcal{H}} \quad \forall i \in[k], \quad \sum_{i} D(i \mid y)=1_{\mathcal{H}} \quad \forall y \in Y \\
& 0 \leq E(x \mid i) \leq 1_{\mathcal{H}} \forall(x, i) \in X \times[k], \quad 0 \leq D(i \mid y) \leq 1_{\mathcal{H}} \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

Quantum-assisted channel coding

- Scalar (commutative) vensus matrix (non-commutative) variables:
\square

- Unknown if $p_{\text {succ }}^{*}(W, k)$ is computable

Quantum-assisted channel coding

- Understand the possible separation: $p_{\text {succ }}(W, k)$ versus $p_{\text {succ }}^{*}(W, k)$
- Foltie asticiid capacity quantum assistance does noterned

$$
C(W)=C^{*}(W) \text { [Benne, PhL(1999)] }
$$

- In general, there is a separation:

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right) \quad \rightarrow \text { this is also optimal with two-dimensional assistance } \begin{gathered}
p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833 \quad \text { vs. } \quad p_{\text {succ }}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902 \\
\text { [Prevedel et al., PRL (2011)] } \\
\text { [Hemenway et al., PRA (2013)] } \\
\text { [Williams and Bourdon, arXiv:1109.1029] }
\end{gathered}
$$

- However $[0.902,1] \ni p_{\text {succ }}^{*}(Z, 2)=$?
- We give a converging hierarchy of semidefinite programming (sdp) relaxations:

$$
p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k)=\operatorname{sdp}_{\infty}(W, k) \leq \ldots \leq \operatorname{sdp}_{1}(W, k)
$$

First level sdp relaxation

- Quantum bilinear program:

$$
\begin{aligned}
p_{\text {succ }}^{*}(W, k):=\underset{(\mathcal{H}, \psi, E, D)}{\operatorname{maximize}} \quad & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x)\langle\psi| E(x \mid i) \otimes D(i \mid y)|\psi\rangle \\
& \text { subject to } \quad \\
& \sum_{x} E(x \mid i)=1_{\mathcal{H}} \quad \forall i \in[k], \quad \sum_{i} D(i \mid y)=1_{\mathcal{H}} \quad \forall y \in Y \\
& 0 \leq E(x \mid i) \leq 1_{\mathcal{H}} \forall(x, i) \in X \times[k], \quad 0 \leq D(i \mid y) \leq 1_{\mathcal{H}} \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

First level sdp relaxation

- Quantum bilinear program:
idea: relaxation of this bilinear form

- First step: see as the part of the upper-right block of the Gram matrix

$$
\begin{aligned}
& \Omega=\sum_{u, v}\langle\psi| X_{u} X_{v}|\psi\rangle|u\rangle\langle v| \quad \text { with } \quad X_{u}= \begin{cases}E(x \mid i) & u=(i, x) \\
D(j \mid y) & u=(j, y)\end{cases} \\
& \Omega=\left(\begin{array}{c:c}
\langle\psi| E(x \mid i) \cdot E\left(x^{\prime} \mid i^{\prime}\right)|\psi\rangle & \langle\psi| E(x \mid i) \cdot D(y \mid j)|\psi\rangle \\
\langle\psi| E\left(x^{\prime} \mid i^{\prime}\right) \cdot D\left(y^{\prime} \mid j^{\prime}\right)|\psi\rangle & \left.\langle\psi| D(y \mid j) \cdot D\left(y^{\prime} \mid j^{\prime}\right)\right]|\psi\rangle
\end{array}\right)
\end{aligned}
$$

- Original constraints can be formulated as positivity conditions on $\Omega: \operatorname{sdp}_{1}(W, k)$
motivated by: "NPA hierarchy" (for polynomial optimization, study of Bell inequalities)
[Lasserre, SIAM (2001)], [Parrilo, Math. Program. (2003)], [Navascues et al., PRL (2007)], [Doherty et al., IEEE CCC (2008)], [Navascues et al., NJP (2008)], [Pironio et al., SIAM (2010)]

First level sdp relaxation

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\left.\begin{array}{rl}
\operatorname{sdp}_{1}(W, k)= & \underset{\Omega}{\operatorname{maximize}}
\end{array} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)}\right)
$$

First level sdp relaxation

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k) \leq \operatorname{lp}_{1}(W, k) \leq$ const $\cdot p_{\text {succ }}(W, k)$

$$
\operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \quad \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)}
$$

[Barman and Fawzi, Proc. IEEE ISIT (2016)]
subject to $\Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad$ with \emptyset the empty symbol

$$
\text { new condition } \rightarrow \begin{cases}\Omega_{u, v} \geq 0 & \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\ \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} & \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\ \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} & \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .\end{cases}
$$

- Going back to opr example: $\quad p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833$
$Z=\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 1 / 3 \\ 1 / 3 & 0 & 1 / 3 & 0 \\ 0 & 1 / 3 & 0 & 1 / 3 \\ 1 / 3 & 0 & 0 & 1 / 3 \\ 0 & 1 / 3 & 1 / 3 & 0\end{array}\right)$
(NPA first level and non-
signaling bounds are one)
- Relaxation: $p_{\text {succ }}^{*}(Z, 2) \leq \operatorname{sdp}_{1}(Z, 2) \approx 0.908=\frac{1}{2}+\frac{1}{\sqrt{6}}$
- Four-dimensional assistance: $p_{\text {succ }}^{*}(Z, 2) \geq \frac{1}{2}+\frac{1}{\sqrt{6}}$

Quantum bilinear optimization

- Quantum-assisted channel coding:

$$
\begin{aligned}
p_{\text {succ }}^{*}(W, k):=\underset{(\mathcal{H}, \psi, E, D)}{\operatorname{maximize}} & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x)\langle\psi| E(x \mid i) \otimes D(i \mid y)|\psi\rangle \\
& \text { subject to } \\
& \sum_{x} E(x \mid i)=1_{\mathcal{H}} \quad \forall i \in[k], \quad \sum_{i} D(i \mid y)=1_{\mathcal{H}} \quad \forall y \in Y \\
& 0 \leq E(x \mid i) \leq 1_{\mathcal{H}} \forall(x, i) \in X \times[k], \quad 0 \leq D(i \mid y) \leq 1_{\mathcal{H}} \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

- General form:

$$
\begin{aligned}
& p^{*}[A, \mathcal{G}, \mathcal{K}]:=\underset{\left(\mathcal{H}, \psi, E_{\alpha}, D_{\beta}\right)}{\operatorname{maximize}} \sum_{\alpha, \beta} A_{\alpha, \beta}\langle\psi| E_{\alpha} D_{\beta}|\psi\rangle \\
& \text { subject to } \quad\left[E_{\alpha}, D_{\beta}\right]=0 \quad \forall(\alpha, \beta) \in[N] \times[M] \\
& g\left(E_{1}, \ldots, E_{N}\right) \geq 0 \quad \forall g \in \mathcal{G} \\
& k\left(D_{1}, \ldots, D_{M}\right) \geq 0 \quad \forall k \in \mathcal{K} .
\end{aligned}
$$

where: (i) Hilbert space \mathcal{H} with $\psi \in \mathcal{H},\|\psi\|=1$
(ii) Hermitian bounded operators $E_{\alpha}, D_{\beta} \in \mathcal{B}(\mathcal{H})$
(iii) sets of affine constraints $\mathcal{G}:=\left\{g\left(z_{1}, \ldots, z_{N}\right)\right\}$ and $\mathcal{K}:=\left\{k\left(y_{1}, \ldots, y_{M}\right)\right\}$

Quantum bilinear optimization

- First level sdp of NPA hierarchy:

Quantum bilinear optimization

- Central idea: considering higher order products of the variables X_{u} leads to more positivity constraints
- Second level $\operatorname{sdp}_{2}[A, \mathcal{G}, \mathcal{K}]$ from positive constraints on the larger matrix:

$$
\Omega^{2}=\sum_{u_{1} u_{2} v_{1} v_{2}} \operatorname{tr}\left[\left(X_{u_{1}} X_{v_{1}}\right)^{*} X_{u_{2}} X_{v_{2}}\right]\left|u_{1} u_{2}\right\rangle\left\langle v_{1} v_{2}\right| \quad \text { with } \left\lvert\, \quad X_{u}=\left\{\begin{array}{cc}
E_{\alpha} & u=\alpha \\
D_{\beta} & u=\beta
\end{array}\right.\right.
$$

Asymptotically convergent sdp hierarchy

$$
p^{*}(A, \mathcal{G}, \mathcal{K})=\lim _{n \rightarrow \infty} \operatorname{sdp}_{n}(A, \mathcal{G}, \mathcal{K})
$$

- Additional constraints compared to NPA hierarchy important for some applications and lead to natural properties of the sdp relaxations (analytically / numerically)

Conclusion

- (Improved) sdp outer hierarchy for bounding quantum advantage:
(i) Quantum-assisted channel coding
(ii) Quantum value of two-prover games
\rightarrow first level in independent work [Sikora and Varvitsiotis, Math. Program. (2016)]
(iii) Upper bound the power of quantum adversaries in cryptography
\rightarrow cf. [B. et al., IEEE Trans. on Information Theory (2017)]
(iv) Outer hierarchy for completely positive semi-definite cone: quantum graph parameters, zero-error quantum information theory, etc.
—> see [Laurent and Piovesan, SIAM Journal on Optimization (2015)]
- Fully quantum problems? Omar this morning.

