Thermal States as Convex Combinations of Matrix Product States

Mario Berta - arXiv:1709.07423

with Fernando Brandão, Jutho Haegeman, Volkher B. Scholz, and Frank Verstraete

Strongly Interacting Spin Chains: Ground States

• Matrix product states (MPS) form a sub-manifold $M_{MPS}^D \subset \mathbb{C}^{d^n}$ of the state space of n distinguishable spin-d particles. They are represented as

$$|\psi[A]
angle := \sum_{i_1,\dots,i_n} \operatorname{Tr}[A_{i_1}\cdots A_{i_n}] \ket{i_1}\cdots \ket{i_n},$$

where for $j=1,\ldots,n$ the A_{i_j} are $D\times D$ dimensional complex matrices. The parameter D is called the bond dimension.

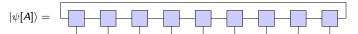


Figure from [Bridgeman & Chubb '17]

- MPS with low bond dimension D capture the ground state physics of one-dimensional local gapped Hamiltonians [Hastings '07].
- Various algorithms that (efficiently) find the best approximate state within the sub-manifold M^D_{MPS} for the ground state, e.g., variationally using the density matrix renormalization group (DMRG).

Strongly Interacting Spin Chains: Thermal States

• We are interested in thermal states of one-dimensional local Hamiltonians H at non-zero temperature T > 0:

$$\rho(H,T) := \frac{\exp(H/T)}{\operatorname{Tr}\left[\exp(H/T)\right]}.$$

 Matrix product operators (MPO) provide a faithful approximation [Hastings '06] and (efficient) algorithms for finding them are known [Verstraete et al. '04].

Major conceptual drawback

No distinction made between classical and quantum correlations \Rightarrow classical correlations should be dealt with by using Monte Carlo sampling techniques and one should not waste a large bond dimension to those fluctuations.

 MPO based algorithms have some further practical drawbacks, such as positivity issues as well as blow up of bond dimension for purification based methods

Main Result

- Let $H = \sum_{i \in I} h_i$ be a one-dimensional local Hamiltonian with uniform bound on the interaction strength $||h_i||_{\infty} \le 1 \ \forall i \in I$.
- Can we approximate the thermal state

$$\rho(H,T) = \frac{\exp(H/T)}{\operatorname{Tr}\left[\exp(H/T)\right]} \text{ for fixed temperature } T > 0$$

as a convex combination of MPS with low bond dimension?

Thermal states as convex combinations of MPS

For any $\varepsilon\in(0,1]$ there exists a bond dimension $D\in\mathbb{N}$ and a probability measure $\mathrm{d}\mu_{\varepsilon}$ on the manifold M_{MPS}^D such that

$$\left\| \rho(H,T) - \underbrace{\int d\mu_{\varepsilon}([A])|\psi[A]\rangle\langle\psi[A]|}_{=: \ \rho[\mu_{\varepsilon}]} \right\|_{1} \leq \varepsilon,$$

where $||X||_1 := \mathrm{Tr}[|X|]$. The bond dimension D scales quasi-polynomially in ε^{-1} and system size, and doubly exponential in T^{-1} .

Proof Ideas I

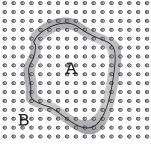


Figure from [Wolf et al., 08].

 Thermal states with finite correlation length have an area law for the quantum mutual information (QMI) [Wolf et al. '08]

$$I(A:B)_{
ho}:=H(A)_{
ho}+H(B)_{
ho}-H(AB)_{
ho}$$
 for $H(A)_{
ho}:=-\mathrm{Tr}\left[
ho_{A}\log
ho_{A}
ight].$ That is, $I(A:B)_{
ho}\lessapprox|\delta A|$.

 QMI measures (quantum and classical) correlations ⇒ can area law be extended to other entanglement measures?

Proof Ideas II

• For our purposes we are interested in an area law for entanglement of formation

$$E_F(A:B)_\rho := \inf \sum_i p_i H(A)_{\rho^i}, \quad \text{with decompositions } \rho_{AB} = \sum_i p_i |\rho^i\rangle \langle \rho^i|_{AB}.$$

 \Rightarrow this would imply exactly what we want — up to $H(A)_{\rho} \approx H_{\max}(A)_{\rho}$.

One might think that

$$E_F(A:B)_{\rho} \stackrel{?}{\leq} I(A:B)_{\rho}$$

 However, using concentration of measure phenomena [Hayden et al. '06] show that maybe somewhat surprisingly

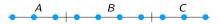
$$E_F(A:B)_\rho\gg I(A:B)_\rho$$
 is possible.

 Another entanglement measure (tripartite) is the conditional quantum mutual information (CQMI)

$$I(A:C|B)_{\rho}:=H(AB)_{\rho}+H(BC)_{\rho}-H(B)_{\rho}-H(ABC)_{\rho}\geq 0.$$

Proof Ideas III

• Exponential decay of $I(A:C|B)_{\rho}$ in the system size of B connecting A and C?



[Brandão & Kastoryano '16] and [Swingle & McGreevy '16]

• Connection to Markov chain structure [Fawzi & Renner '15] and [many more]

$$I(A:C|B)_{\rho} \geq \frac{1}{4} \left\| \rho_{ABC} - (\mathcal{I}_A \otimes \Lambda_{B \to BC})(\rho_{AB}) \right\|_1^2 \,,$$

where $\Lambda_{B\to BC}$ denotes quantum channel only acting on the region B.

• However, statement about CQMI not known for general systems of interest.

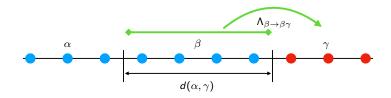
Proof Ideas IV

Local Markov chain structure [Kato & Brandão '16]

Let $H=\sum_{i\in I}h_i$ be a one-dimensional local Hamiltonian with $\|h_i\|_\infty \leq 1 \ \forall i\in I$. Then, for any tripartite split of the lattice $\alpha\beta\gamma$, there exists a local quantum channel $\Lambda_{\beta\to\beta\gamma}$ only acting on the region β such that

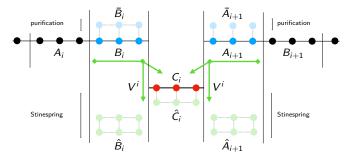
$$\left\| \rho_{\alpha\beta\gamma}(H,T) - \left(\mathcal{I}_{\alpha} \otimes \Lambda_{\beta \to \beta\gamma} \right) \left(\rho_{\alpha\beta}(H,T) \right) \right\|_{1} \le \exp \left(-q(T)\sqrt{d(\alpha,\gamma)} \right),$$

where $d(\alpha, \gamma) \ge \ell_0$ denotes the minimal distance in system size between α and γ , and $q(T) := C \exp(-c/T)$ for some universal constants $0 < \ell_0, C, c < 100$.



Proof Sketch

- For fixed T>0 and $\varepsilon\in(0,1]$ use [Kato & Brandão '16] in parallel to:
 - **1** Construct global MPS $|\Psi(D,\varepsilon)\rangle$ with quasi-polynomial scaling in n and $1/\varepsilon$
 - ② Show that $|\Psi(D,\varepsilon)\rangle$ is purification of convex combination of MPS—denoted by $\rho[\mu_{\varepsilon}]$
 - **3** Show that $\rho[\mu_{\varepsilon}]$ is close to thermal state $\rho(H, T)$



L=
$$A_1B_1C_1$$
 $A_2B_2C_2\cdots A_lB_lC_l$ with $|A_i|=|B_i|=2^{\log^2(n/\varepsilon)}$, $|C_i|=2^{5\xi\cdot\log^2(n/\varepsilon)}$ and ξ corr. length \Rightarrow choose $\alpha_i=L/(\beta_i\gamma_i)$, $\beta_i=B_iA_{i+1}$, $\gamma_i=C_i$

Application: Numerics

- MPO numerical methods to approximate thermal state [Verstraete et al. '04]
- Alternatively minimally entangled typical thermal states (METTS) [White '09]:
 - **1** Randomly choose product state $|\vec{i}\rangle:=|i_1\rangle\cdots|i_n\rangle$
 - Approximate the imaginary time evolved

$$|\phi(\textit{T},\vec{i}\,)\rangle := \textit{p}(\vec{i}\,)^{-1/2}\exp\left(-\beta \textit{H}/2\right)|\vec{i}\,\rangle, \quad \text{with } \textit{p}(\vec{i}\,) := \langle\vec{i}\,|\exp\left(-\beta \textit{H}\right)|\vec{i}\,\rangle$$

by an MPS with low bond dimension

- **③** Collapse a new product state $|\vec{i'}\rangle$ from $|\phi(T,\vec{i})\rangle$ with probability $p(\vec{i}\rightarrow\vec{j}):=|\langle\vec{i'}|\phi(T,\vec{i})\rangle|^2$ and return to step 2
- ⇒ approximately creates convex combination of MPS with low bond dimension

$$\frac{1}{Z} \sum_{\vec{i}} p(\vec{i}) |\phi(T, \vec{i})\rangle \langle \phi(T, \vec{i})|$$

- Mathematical justification for (heuristic) METTS algorithm
- Similar mathematical justification for extension to algorithms time evolving quantum systems—hydrodynamics [Leviatan et al. '17]

Conclusion

Main result

The thermal state of every one-dimensional local Hamiltonian with uniform bound on the interaction strength is approximated as a convex combination of MPS with bond dimension scaling quasi-polynomially in ε^{-1} and system size:

$$ho(H,T)pprox_{arepsilon}\int\mathrm{d}\mu_{arepsilon}ig([A]ig)|\psi[A]
angle\langle\psi[A]|\,.$$

- Can the parameter in our main result be improved?

 quasi-polynomial versus

 polynomial scaling of bond dimension in terms of system size [Kim '17].
- For our proof strategy, this boils down to improving [Kato & Brandão '16]

$$\left\| \rho_{\alpha\beta\gamma}(H,T) - \left(\mathcal{I}_{\alpha} \otimes \Lambda_{\beta \to \beta\gamma} \right) \left(\rho_{\alpha\beta}(H,T) \right) \right\|_{1} \leq \exp\left(-q(T)\sqrt{d(\alpha,\gamma)} \right)$$

to $\exp(-q(T)d(\alpha,\gamma))$ dependence. Examples in [Swingle & McGreevy '16].

- Alternatively we could start from known MPO methods [Hastings '06].
- Physics: say more about numerics for METTS algorithm and hydrodynamics?

Thanks. Check out arXiv:1709.07423.