Multivariate Trace Inequalities

Mario Berta

arXiv:1604.03023 with Sutter and Tomamichel (to appear in CMP) arXiv:1512.02615 with Fawzi and Tomamichel

QMath13 - October 8, 2016

Caltech

Motivation: Quantum Entropy

- Entropy of quantum states ρ_{A} on Hilbert spaces \mathcal{H}_{A} [von Neumann 1927]:

$$
\begin{equation*}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right] . \tag{1}
\end{equation*}
$$

- Strong subadditivity (SSA) of tripartite quantum states on $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$ from matrix trace inequalities [Lieb \& Ruskai 1973]:

$$
\begin{equation*}
H(A B)_{\rho}+H(B C)_{\rho} \geq H(A B C)_{\rho}+H(B)_{\rho} . \tag{2}
\end{equation*}
$$

- Generates all known mathematical properties of quantum entropy, manifold applications in quantum physics, quantum information theory, theoretical computer science etc.
- This talk: entropy for quantum systems, strengthening of SSA from multivariate trace inequalities.

Motivation: Quantum Entropy

- Entropy of quantum states ρ_{A} on Hilbert spaces \mathcal{H}_{A} [von Neumann 1927]:

$$
\begin{equation*}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right] \tag{1}
\end{equation*}
$$

■ Strong subadditivity (SSA) of tripartite quantum states on $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$ from matrix trace inequalities [Lieb \& Ruskai 1973]:

$$
\begin{equation*}
H(A B)_{\rho}+H(B C)_{\rho} \geq H(A B C)_{\rho}+H(B)_{\rho} \tag{2}
\end{equation*}
$$

■ Generates all known mathematical properties of quantum entropy, manifold applications in quantum physics, quantum information theory, theoretical computer science etc.

- This talk: entropy for quantum systems, strengthening of SSA from multivariate trace inequalities.
■ Mark Wilde at 4pm: Universal Recoverability in Quantum Information.

Overview

1 Entropy for quantum systems

2 Multivariate trace inequalities

3 Proof of entropy inequalities

4 Conclusion

Entropy for classical systems

■ Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$
\begin{equation*}
H(X)_{P}:=-\sum_{x} P(x) \log P(x), \quad \text { with } P(x) \log P(x)=0 \text { for } P(x)=0 \tag{3}
\end{equation*}
$$

Entropy for classical systems

■ Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$
\begin{equation*}
H(X)_{P}:=-\sum_{x} P(x) \log P(x), \quad \text { with } P(x) \log P(x)=0 \text { for } P(x)=0 \tag{3}
\end{equation*}
$$

■ Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$
\begin{equation*}
D(P \| Q):=\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad[\text { Kullback \& Leibler 1951] } \tag{4}
\end{equation*}
$$

where $P(x) \log \frac{P(x)}{Q(x)}=0$ for $P(x)=0$ and by continuity $+\infty$ if $P \ll Q$.

Entropy for classical systems

- Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$
\begin{equation*}
H(X)_{P}:=-\sum_{x} P(x) \log P(x), \quad \text { with } P(x) \log P(x)=0 \text { for } P(x)=0 \tag{3}
\end{equation*}
$$

- Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$
\begin{equation*}
D(P \| Q):=\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad[\text { Kullback \& Leibler 1951], } \tag{4}
\end{equation*}
$$

where $P(x) \log \frac{P(x)}{Q(x)}=0$ for $P(x)=0$ and by continuity $+\infty$ if $P \ll Q$.
■ Multipartite entropy measures are generated through relative entropy, e.g., SSA:

$$
\begin{align*}
H(X Y)_{P}+H(Y Z)_{P} & \geq H(X Y Z)_{P}+H(Y)_{P} \quad \text { equivalent to } \tag{5}\\
D\left(P_{X Y Z} \| U_{X} \times P_{Y Z}\right) & \geq D\left(P_{X Y} \| U_{X} \times P_{Y}\right) \quad \text { with } U_{X} \text { uniform distribution. } \tag{6}
\end{align*}
$$

Entropy for classical systems

■ Entropy of probability distribution P of random variable X over finite alphabet [Shannon 1948, Rényi 1961]:

$$
\begin{equation*}
H(X)_{P}:=-\sum_{x} P(x) \log P(x), \quad \text { with } P(x) \log P(x)=0 \text { for } P(x)=0 \tag{3}
\end{equation*}
$$

■ Extension to relative entropy of P with respect to distribution Q over finite alphabet,

$$
\begin{equation*}
D(P \| Q):=\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \quad \text { [Kullback \& Leibler 1951] } \tag{4}
\end{equation*}
$$

where $P(x) \log \frac{P(x)}{Q(x)}=0$ for $P(x)=0$ and by continuity $+\infty$ if $P K Q$.
■ Multipartite entropy measures are generated through relative entropy, e.g., SSA:

$$
\begin{align*}
H(X Y)_{P}+H(Y Z)_{P} & \geq H(X Y Z)_{P}+H(Y)_{P} \quad \text { equivalent to } \tag{5}\\
D\left(P_{X Y Z} \| U_{X} \times P_{Y Z}\right) & \geq D\left(P_{X Y} \| U_{X} \times P_{Y}\right) \quad \text { with } U_{X} \text { uniform distribution. } \tag{6}
\end{align*}
$$

■ Monotonicity of relative entropy (MONO) under stochastic matrices N :

$$
\begin{equation*}
D(P \| Q) \geq D(N(P) \| N(Q)) \tag{7}
\end{equation*}
$$

Entropy for quantum systems

- The entropy of $\rho_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)$ is defined as:

$$
\begin{equation*}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum_{x} \lambda_{x} \log \lambda_{x} \quad[\text { von Neumann 1927]. } \tag{8}
\end{equation*}
$$

- Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?

Entropy for quantum systems

- The entropy of $\rho_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)$ is defined as:

$$
\begin{equation*}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum_{x} \lambda_{x} \log \lambda_{x} \quad[\text { von Neumann 1927]. } \tag{8}
\end{equation*}
$$

- Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?
- Commutative relative entropy for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ defined as

$$
\begin{equation*}
D_{K}(\rho \| \sigma):=\sup _{\mathcal{M}} D(\mathcal{M}(\rho) \| \mathcal{M}(\sigma)) \quad[\text { Donald 1986, Petz \& Hiai 1991] } \tag{9}
\end{equation*}
$$

where $\mathcal{M} \in \operatorname{CPTP}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)$ und $\operatorname{Bild}(\mathcal{M}) \subseteq M \subseteq \operatorname{Lin}\left(\mathcal{H}^{\prime}\right), M$ commutative subalgebra.

Entropy for quantum systems

- The entropy of $\rho_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)$ is defined as:

$$
\begin{equation*}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum_{x} \lambda_{x} \log \lambda_{x} \quad[\text { von Neumann 1927]. } \tag{8}
\end{equation*}
$$

- Question: what is the extension of the relative entropy for quantum states $[\rho, \sigma] \neq 0$?
- Commutative relative entropy for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ defined as

$$
\begin{equation*}
D_{K}(\rho \| \sigma):=\sup _{\mathcal{M}} D(\mathcal{M}(\rho) \| \mathcal{M}(\sigma)) \quad \text { [Donald 1986, Petz \& Hiai 1991] } \tag{9}
\end{equation*}
$$

where $\mathcal{M} \in \operatorname{CPTP}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)$ und $\operatorname{Bild}(\mathcal{M}) \subseteq M \subseteq \operatorname{Lin}\left(\mathcal{H}^{\prime}\right), M$ commutative subalgebra.

- The quantum relative entropy is defined as

$$
\begin{equation*}
D(\rho \| \sigma):=\operatorname{tr}[\rho(\log \rho-\log \sigma)] \quad[\text { Umegaki 1962] } \tag{10}
\end{equation*}
$$

■ Monotonicity (MONO) for $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ and $\mathcal{N} \in \operatorname{CPTP}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)$:

$$
\begin{equation*}
D(\rho \| \sigma) \geq D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \quad[\text { Lindblad 1975] } \tag{11}
\end{equation*}
$$

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)
For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma>0$ we have

$$
\begin{equation*}
D_{K}(\rho \| \sigma) \leq D(\rho \| \sigma) \quad \text { with equality if and only if }[\rho, \sigma] \neq 0 . \tag{12}
\end{equation*}
$$

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma>0$ we have

$$
\begin{equation*}
D_{K}(\rho \| \sigma) \leq D(\rho \| \sigma) \quad \text { with equality if and only if }[\rho, \sigma] \neq 0 . \tag{12}
\end{equation*}
$$

Lemma (Variational formulas for entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ we have

$$
\begin{align*}
D_{K}(\rho \| \sigma) & =\sup _{\omega>0} \operatorname{tr}[\rho \log \omega]-\log \operatorname{tr}[\sigma \omega] \tag{13}\\
D(\rho \| \sigma) & =\sup _{\omega>0} \operatorname{tr}[\rho \log \omega]-\log \operatorname{tr}[\exp (\log \sigma+\log \omega)] \quad \text { [Araki ?, Petz 1988]. } \tag{14}
\end{align*}
$$

■ Golden-Thompson inequality:

$$
\begin{equation*}
\operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right] . \tag{15}
\end{equation*}
$$

Entropy for quantum systems II

Theorem (Achievability of relative entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho, \sigma>0$ we have

$$
\begin{equation*}
D_{K}(\rho \| \sigma) \leq D(\rho \| \sigma) \quad \text { with equality if and only if }[\rho, \sigma] \neq 0 . \tag{12}
\end{equation*}
$$

Lemma (Variational formulas for entropy, B. et al. 2015)

For $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ we have

$$
\begin{align*}
D_{K}(\rho \| \sigma) & =\sup _{\omega>0} \operatorname{tr}[\rho \log \omega]-\log \operatorname{tr}[\sigma \omega] \tag{13}\\
D(\rho \| \sigma) & =\sup _{\omega>0} \operatorname{tr}[\rho \log \omega]-\log \operatorname{tr}[\exp (\log \sigma+\log \omega)] \quad \text { [Araki ?, Petz 1988]. } \tag{14}
\end{align*}
$$

■ Golden-Thompson inequality:

$$
\begin{equation*}
\operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right] . \tag{15}
\end{equation*}
$$

- Proof: new matrix analysis technique asymptotic spectral pinching (see also [Hiai \& Petz 1993, Mosonyi \& Ogawa 2015]).

Asymptotic spectral pinching [B. et al. 2016]

■ $A \geq 0$ with spectral decomposition $A=\sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$
\begin{equation*}
\mathcal{P}_{A}: X \geq 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_{\lambda} X P_{\lambda} . \tag{16}
\end{equation*}
$$

Asymptotic spectral pinching [B. et al. 2016]

- $A \geq 0$ with spectral decomposition $A=\sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$
\begin{equation*}
\mathcal{P}_{A}: X \geq 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_{\lambda} X P_{\lambda} . \tag{16}
\end{equation*}
$$

(i) $\left[\mathcal{P}_{A}(X), A\right]=0$
(ii) $\operatorname{tr}\left[\mathcal{P}_{A}(X) A\right]=\operatorname{tr}[X A]$
(iii) $\mathcal{P}_{A}(X) \geq|\operatorname{spec}(A)|^{-1} \cdot X$
(iv) $|\operatorname{spec}(A \otimes \cdots \otimes A)|=\left|\operatorname{spec}\left(A^{\otimes m}\right)\right| \leq \mathcal{O}(\operatorname{poly}(m))$.

Asymptotic spectral pinching [B. et al. 2016]

- $A \geq 0$ with spectral decomposition $A=\sum_{\lambda} \lambda P_{\lambda}$, where $\lambda \in \operatorname{spec}(A) \subseteq \mathbb{R}$ eigenvalues and P_{λ} orthogonal projections. Spectral pinching with respect to A defined as

$$
\begin{equation*}
\mathcal{P}_{A}: X \geq 0 \mapsto \sum_{\lambda \in \operatorname{spec}(A)} P_{\lambda} X P_{\lambda} . \tag{16}
\end{equation*}
$$

(i) $\left[\mathcal{P}_{A}(X), A\right]=0$
(ii) $\operatorname{tr}\left[\mathcal{P}_{A}(X) A\right]=\operatorname{tr}[X A]$
(iii) $\mathcal{P}_{A}(X) \geq|\operatorname{spec}(A)|^{-1} \cdot X$
(iv) $|\operatorname{spec}(A \otimes \cdots \otimes A)|=\left|\operatorname{spec}\left(A^{\otimes m}\right)\right| \leq \mathcal{O}(\operatorname{poly}(m))$.

■ Golden-Thompson inequality:

$$
\begin{align*}
\log \operatorname{tr}[\exp (\log A+\log B)] & =\frac{1}{m} \log \operatorname{tr}\left[\exp \left(\log A^{\otimes m}+\log B^{\otimes m}\right)\right] \\
& \leq \frac{1}{m} \log \operatorname{tr}\left[\exp \left(\log A^{\otimes m}+\log \mathcal{P}_{A \otimes m}\left(B^{\otimes m}\right)\right)\right]+\frac{\log \operatorname{poly}(m)}{m} \tag{19}\\
& =\frac{1}{m} \log \operatorname{tr}\left[A^{\otimes n} \mathcal{P}_{A \otimes m}\left(B^{\otimes m}\right)\right]+\frac{\log \operatorname{poly}(m)}{m} \tag{20}\\
& =\log \operatorname{tr}[A B]+\frac{\log \operatorname{poly}(m)}{m} \tag{21}
\end{align*}
$$

Entropy for quantum systems III

- The right extension for applications is Umegaki's $D(\rho \| \sigma)=\operatorname{tr}[\rho(\log \rho-\log \sigma)]$. Intuition chain rule [Petz 1992] with SSA:

$$
\begin{align*}
H(A B)_{\rho}+H(B C)_{\rho} & \geq H(A B C)_{\rho}+H(B)_{\rho} \quad \text { equivalent to } \tag{22}\\
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right) & \geq D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right) \quad \text { with } \tau_{A}=\frac{1_{A}}{\operatorname{dim}\left(\mathcal{H}_{A}\right)} \tag{23}
\end{align*}
$$

Entropy for quantum systems III

■ The right extension for applications is Umegaki's $D(\rho \| \sigma)=\operatorname{tr}[\rho(\log \rho-\log \sigma)]$. Intuition chain rule [Petz 1992] with SSA:

$$
\begin{align*}
H(A B)_{\rho}+H(B C)_{\rho} & \geq H(A B C)_{\rho}+H(B)_{\rho} \quad \text { equivalent to } \tag{22}\\
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right) & \geq D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right) \quad \text { with } \tau_{A}=\frac{1_{A}}{\operatorname{dim}\left(\mathcal{H}_{A}\right)} \tag{23}
\end{align*}
$$

- All known mathematical properties from MONO:

$$
\begin{equation*}
D(\rho \| \sigma) \geq D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \quad \Rightarrow \text { strengthening of MONO/SSA? } \tag{24}
\end{equation*}
$$

Entropy for quantum systems III

■ The right extension for applications is Umegaki's $D(\rho \| \sigma)=\operatorname{tr}[\rho(\log \rho-\log \sigma)]$. Intuition chain rule [Petz 1992] with SSA:

$$
\begin{align*}
H(A B)_{\rho}+H(B C)_{\rho} & \geq H(A B C)_{\rho}+H(B)_{\rho} \quad \text { equivalent to } \tag{22}\\
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right) & \geq D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right) \quad \text { with } \tau_{A}=\frac{1_{A}}{\operatorname{dim}\left(\mathcal{H}_{A}\right)} \tag{23}
\end{align*}
$$

- All known mathematical properties from MONO:

$$
\begin{equation*}
D(\rho \| \sigma) \geq D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \quad \Rightarrow \text { strengthening of MONO/SSA? } \tag{24}
\end{equation*}
$$

- Equality conditions MONO [Petz 1986]:

Let $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\rho \ll \sigma$ and $\mathcal{N} \in \operatorname{CPTP}\left(\mathcal{H} \rightarrow \mathcal{H}^{\prime}\right)$. Then, we have

$$
\begin{equation*}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))=0 \tag{25}
\end{equation*}
$$

if and only if there exists $\mathcal{R}_{\sigma, \mathcal{N}} \in \operatorname{CPTP}\left(\mathcal{H}^{\prime} \rightarrow \mathcal{H}\right)$ such that

$$
\begin{equation*}
\mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\rho)=\rho \quad \text { und } \quad \mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\sigma)=\sigma \tag{26}
\end{equation*}
$$

The quantum operation $\mathcal{R}_{\sigma, \mathcal{N}}$ is not unique, but can be chosen independent of ρ.

Strong monotonicity (sMONO)

Theorem (Strong monotonicity (sMONO), B. et al. 2016)

For the same premises as before, we have

$$
\begin{equation*}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq D_{K}\left(\rho \| \mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\rho)\right), \tag{27}
\end{equation*}
$$

with
$\mathcal{R}_{\sigma, \mathcal{N}}(\cdot):=\int_{-\infty}^{\infty} \mathrm{d} t \beta_{0}(t) \sigma^{\frac{1+i t}{2}} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-\frac{1+i t}{2}}(\cdot) \mathcal{N}(\sigma)^{-\frac{1-i t}{2}}\right) \sigma^{\frac{1-i t}{2}} \in \operatorname{CPTP}\left(\mathcal{H}^{\prime} \rightarrow \mathcal{H}\right)$ and $\beta_{0}(t):=\frac{\pi}{2}(\cosh (\pi t)+1)^{-1}$.

■ Previous work: [Winter \& Li 2012, Kim 2013, B. et al. 2015, Fawzi \& Renner 2015, Wilde 2015, Junge et al. 2015, Sutter et al. 2016].

Strong monotonicity (sMONO)

Theorem (Strong monotonicity (sMONO), B. et al. 2016)

For the same premises as before, we have

$$
\begin{equation*}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq D_{K}\left(\rho \| \mathcal{R}_{\sigma, \mathcal{N}} \circ \mathcal{N}(\rho)\right), \tag{27}
\end{equation*}
$$

with
$\mathcal{R}_{\sigma, \mathcal{N}}(\cdot):=\int_{-\infty}^{\infty} \mathrm{d} t \beta_{0}(t) \sigma^{\frac{1+i t}{2}} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-\frac{1+i t}{2}}(\cdot) \mathcal{N}(\sigma)^{-\frac{1-i t}{2}}\right) \sigma^{\frac{1-i t}{2}} \in \operatorname{CPTP}\left(\mathcal{H}^{\prime} \rightarrow \mathcal{H}\right)$ and $\beta_{0}(t):=\frac{\pi}{2}(\cosh (\pi t)+1)^{-1}$.

■ Previous work: [Winter \& Li 2012, Kim 2013, B. et al. 2015, Fawzi \& Renner 2015, Wilde 2015, Junge et al. 2015, Sutter et al. 2016].

- Special case SSA (sSSA), becomes an equality in the commutative case:

$$
\begin{equation*}
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right) \geq D_{K}\left(\rho_{A B C} \|\left(\mathcal{I}_{A} \otimes \mathcal{R}_{B \rightarrow B C}\right)\left(\rho_{A B}\right)\right) \tag{28}
\end{equation*}
$$

with $\mathcal{R}_{B \rightarrow B C}(\cdot):=\int_{-\infty}^{\infty} \mathrm{d} t \beta_{0}(t) \rho_{B C}^{\frac{1+i t}{2}}\left(\left(\rho_{B}^{-\frac{1+i t}{2}}(\cdot) \rho_{B}^{-\frac{1-i t}{2}}\right) \otimes 1_{C}\right) \rho_{B C}^{\frac{1-i t}{2}}$, where $\mathcal{R}_{B \rightarrow B C} \in \operatorname{CPTP}\left(\mathcal{H}_{B} \rightarrow \mathcal{H}_{B} \otimes \mathcal{H}_{C}\right)$.

Proof SSA

- Following [Lieb \& Ruskai 1973] we have with Klein's inequality
$D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right)=D\left(\rho_{A B C} \| \exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right)$

$$
\begin{equation*}
\geq \operatorname{tr}\left[\rho_{A B C}-\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \tag{29}
\end{equation*}
$$

We could conclude SSA if $\operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \leq 1$.

Proof SSA

- Following [Lieb \& Ruskai 1973] we have with Klein's inequality

$$
\begin{equation*}
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right)=D\left(\rho_{A B C} \| \exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right) \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\geq \operatorname{tr}\left[\rho_{A B C}-\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \tag{30}
\end{equation*}
$$

We could conclude SSA if $\operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \leq 1$.
■ Golden-Thompson $\operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right]$ to Lieb's triple matrix inequality:

$$
\begin{equation*}
\operatorname{tr}\left[\exp \left(\log M_{1}-\log M_{2}+\log M_{3}\right)\right] \leq \int_{0}^{\infty} \mathrm{d} \lambda \operatorname{tr}\left[M_{1}\left(M_{2}+\lambda\right)^{-1} M_{3}\left(M_{2}+\lambda\right)^{-1}\right] \tag{31}
\end{equation*}
$$

[Lieb 1973].

Proof SSA

- Following [Lieb \& Ruskai 1973] we have with Klein's inequality

$$
\begin{equation*}
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right)=D\left(\rho_{A B C} \| \exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right) \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\geq \operatorname{tr}\left[\rho_{A B C}-\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \tag{30}
\end{equation*}
$$

We could conclude SSA if $\operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \leq 1$.
■ Golden-Thompson $\operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right]$ to Lieb's triple matrix inequality:

$$
\begin{equation*}
\operatorname{tr}\left[\exp \left(\log M_{1}-\log M_{2}+\log M_{3}\right)\right] \leq \int_{0}^{\infty} \mathrm{d} \lambda \operatorname{tr}\left[M_{1}\left(M_{2}+\lambda\right)^{-1} M_{3}\left(M_{2}+\lambda\right)^{-1}\right] \tag{31}
\end{equation*}
$$

[Lieb 1973].
\square Proof SSA with $M_{1}:=\rho_{A B}, M_{2}:=\rho_{B}, M_{3}:=\rho_{B C}$ and $\int_{0}^{\infty} \mathrm{d} \lambda x(x+\lambda)^{-2}=1$.

Proof SSA

- Following [Lieb \& Ruskai 1973] we have with Klein's inequality

$$
\begin{equation*}
D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right)=D\left(\rho_{A B C} \| \exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right) \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\geq \operatorname{tr}\left[\rho_{A B C}-\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \tag{30}
\end{equation*}
$$

We could conclude SSA if $\operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right] \leq 1$.
■ Golden-Thompson $\operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right]$ to Lieb's triple matrix inequality:

$$
\begin{align*}
& \operatorname{tr}\left[\exp \left(\log M_{1}-\log M_{2}+\log M_{3}\right)\right] \leq \int_{0}^{\infty} \mathrm{d} \lambda \operatorname{tr}\left[M_{1}\left(M_{2}+\lambda\right)^{-1} M_{3}\left(M_{2}+\lambda\right)^{-1}\right] \\
& {[\text { Lieb 1973] }} \tag{31}
\end{align*}
$$

\square Proof SSA with $M_{1}:=\rho_{A B}, M_{2}:=\rho_{B}, M_{3}:=\rho_{B C}$ and $\int_{0}^{\infty} \mathrm{d} \lambda x(x+\lambda)^{-2}=1$.

- Idea: for SSSA start with the variational formula

$$
\begin{align*}
& D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right) \\
& =\sup _{\omega_{A B C}>0} \operatorname{tr}\left[\rho_{A B C} \log \omega_{A B C}\right]-\log \operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}+\log \omega_{A B C}\right)\right] \tag{32}
\end{align*}
$$

Multivariate trace inequalities

Theorem (Multivariate Golden-Thompson, B. et al. 2016)

Let $p \geq 1, n \in \mathbb{N}$, and $\left\{H_{k}\right\}_{k=1}^{n}$ be a set of hermitian matrices. Then, we have

$$
\begin{equation*}
\log \left\|\exp \left(\sum_{k=1}^{n} H_{k}\right)\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{0}(t) \log \left\|\prod_{k=1}^{n} \exp \left((1+i t) H_{k}\right)\right\|_{p} \tag{33}
\end{equation*}
$$

where $\|M\|_{p}:=\left(\operatorname{tr}\left[\left(M^{\dagger} M\right)^{p / 2}\right]\right)^{1 / p}$ with $\beta_{0}(t):=\frac{\pi}{2}(\cosh (\pi t)+1)^{-1}$.

Multivariate trace inequalities

Theorem (Multivariate Golden-Thompson, B. et al. 2016)

Let $p \geq 1, n \in \mathbb{N}$, and $\left\{H_{k}\right\}_{k=1}^{n}$ be a set of hermitian matrices. Then, we have

$$
\begin{equation*}
\log \left\|\exp \left(\sum_{k=1}^{n} H_{k}\right)\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{0}(t) \log \left\|\prod_{k=1}^{n} \exp \left((1+i t) H_{k}\right)\right\|_{p} \tag{33}
\end{equation*}
$$

where $\|M\|_{p}:=\left(\operatorname{tr}\left[\left(M^{\dagger} M\right)^{p / 2}\right]\right)^{1 / p}$ with $\beta_{0}(t):=\frac{\pi}{2}(\cosh (\pi t)+1)^{-1}$.

- Proof based on Lie-Trotter expansion $\exp \left(\sum_{k=1}^{n} H_{k}\right)=\lim _{r \rightarrow 0}\left(\prod_{k=1}^{n} \exp \left(r H_{k}\right)\right)^{1 / r}$ extension of [Araki-Lieb-Thirring 1976/1990]:

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \geq 1, r \in(0,1], n \in \mathbb{N}$, and $\left\{M_{k}\right\}_{k=1}^{n}$ be a set of positive matrices. Then, we have

$$
\begin{equation*}
\log \left\|\left|\prod_{k=1}^{n} M_{k}^{r}\right|^{1 / r}\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{r}(t) \log \left\|\prod_{k=1}^{n} M_{k}^{1+i t}\right\|_{p} \tag{34}
\end{equation*}
$$

with $\beta_{r}(t):=\frac{\sin (\pi r)}{2 r(\cosh (\pi t)+\cos (\pi r))}$.

Complex interpolation theory

■ Strengthening of Hadamard's three line theorem [Hirschman 1952]:
Let $S:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}, g: S \rightarrow \mathbb{C}$ be uniformly bounded on S, holomorph in the interior of S, and continous on the boundary. Then, we have for $r \in(0,1)$ with $\beta_{r}(t):=\frac{\sin (\pi r)}{2 r(\cosh (\pi t)+\cos (\pi r))}$ that:

$$
\begin{align*}
\log |g(r)| & \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{1-r}(t) \log |g(i t)|^{1-r}+\beta_{r}(t) \log |g(1+i t)|^{r} \tag{35}\\
& \leq \sup _{t} \log |g(i t)|^{1-r}+\sup _{t} \log |g(1+i t)|^{r} \tag{36}
\end{align*}
$$

Complex interpolation theory

■ Strengthening of Hadamard's three line theorem [Hirschman 1952]:
Let $S:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}, g: S \rightarrow \mathbb{C}$ be uniformly bounded on S, holomorph in the interior of S, and continous on the boundary. Then, we have for $r \in(0,1)$ with $\beta_{r}(t):=\frac{\sin (\pi r)}{2 r(\cosh (\pi t)+\cos (\pi r))}$ that:

$$
\begin{align*}
\log |g(r)| & \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{1-r}(t) \log |g(i t)|^{1-r}+\beta_{r}(t) \log |g(1+i t)|^{r} \tag{35}\\
& \leq \sup _{t} \log |g(i t)|^{1-r}+\sup _{t} \log |g(1+i t)|^{r} \tag{36}
\end{align*}
$$

■ Stein interpolation for linear operators [Beigi 2013, Wilde 2015, Junge et al. 2015]:
Let $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}$ and $G: S \rightarrow \operatorname{Lin}(\mathcal{H})$ be holomorph in the interior of S and continous on the boundary. For $p_{0}, p_{1} \in[1, \infty], r \in(0,1)$, define p_{r} with $1 / p_{r}=(1-r) / p_{0}+r / p_{1}$. If $z \mapsto\|G(z)\|_{p_{\operatorname{Re}(z)}}$ is uniformly bounded on S, then we have for $\beta_{r}(t)$ as above:

$$
\begin{equation*}
\log \|G(r)\|_{p_{r}} \leq \int_{-\infty}^{\infty} \mathrm{d} t\left(\beta_{1-r}(t) \log \|G(i t)\|_{p_{0}}^{1-r}+\beta_{r}(t) \log \|G(1+i t)\|_{p_{1}}^{r}\right) \tag{37}
\end{equation*}
$$

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)
Let $p \geq 1, r \in(0,1], n \in \mathbb{N}$, and $\left\{M_{k}\right\}_{k=1}^{n}$ be a set of positive matrices. Then, we have

$$
\begin{equation*}
\log \left\|\left|\prod_{k=1}^{n} M_{k}^{r}\right|^{1 / r}\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{r}(t) \log \left\|\prod_{k=1}^{n} M_{k}^{1+i t}\right\|_{p} \tag{38}
\end{equation*}
$$

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \geq 1, r \in(0,1], n \in \mathbb{N}$, and $\left\{M_{k}\right\}_{k=1}^{n}$ be a set of positive matrices. Then, we have

$$
\begin{equation*}
\log \left\|\left.\prod_{k=1}^{n} M_{k}^{r}\right|^{1 / r}\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{r}(t) \log \left\|\prod_{k=1}^{n} M_{k}^{1+i t}\right\|_{p} \tag{38}
\end{equation*}
$$

- Proof: Use Stein-Hirschman for $1 / p_{r}=(1-r) / p_{0}+r / p_{1}$:

$$
\begin{equation*}
\log \|G(r)\|_{p_{r}} \leq \int_{-\infty}^{\infty} \mathrm{d} t\left(\beta_{1-r}(t) \log \|G(i t)\|_{p_{0}}^{1-r}+\beta_{r}(t) \log \|G(1+i t)\|_{p_{1}}^{r}\right) \tag{39}
\end{equation*}
$$

and choose

$$
\begin{equation*}
G(z):=\prod_{k=1}^{n} M_{k}^{z}=\prod_{k=1}^{n} \exp \left(z \log M_{k}\right) \quad \text { sowie } \quad p_{0}:=\infty, p_{1}:=p, p_{r}=\frac{p}{r} \tag{40}
\end{equation*}
$$

For positive matrices $M_{k}, M_{k}^{i t}$ becomes unitary, $\log \|\cdot\|_{p_{0}}^{1-r}$ in (39) becomes zero, and (38) follows.

Proof of multivariate trace inequalities

Lemma (Multivariate Araki-Lieb-Thirring, B. et al. 2016)

Let $p \geq 1, r \in(0,1], n \in \mathbb{N}$, and $\left\{M_{k}\right\}_{k=1}^{n}$ be a set of positive matrices. Then, we have

$$
\begin{equation*}
\log \left\|\left.\prod_{k=1}^{n} M_{k}^{r}\right|^{1 / r}\right\|_{p} \leq \int_{-\infty}^{\infty} \mathrm{d} t \beta_{r}(t) \log \left\|\prod_{k=1}^{n} M_{k}^{1+i t}\right\|_{p} \tag{38}
\end{equation*}
$$

- Proof: Use Stein-Hirschman for $1 / p_{r}=(1-r) / p_{0}+r / p_{1}$:

$$
\begin{equation*}
\log \|G(r)\|_{p_{r}} \leq \int_{-\infty}^{\infty} \mathrm{d} t\left(\beta_{1-r}(t) \log \|G(i t)\|_{p_{0}}^{1-r}+\beta_{r}(t) \log \|G(1+i t)\|_{p_{1}}^{r}\right) \tag{39}
\end{equation*}
$$

and choose

$$
\begin{equation*}
G(z):=\prod_{k=1}^{n} M_{k}^{z}=\prod_{k=1}^{n} \exp \left(z \log M_{k}\right) \quad \text { sowie } \quad p_{0}:=\infty, p_{1}:=p, p_{r}=\frac{p}{r} \tag{40}
\end{equation*}
$$

For positive matrices $M_{k}, M_{k}^{i t}$ becomes unitary, $\log \|\cdot\|_{p_{0}}^{1-r}$ in (39) becomes zero, and (38) follows.
■ Multivariate Golden-Thompson from Lie-Trotter expansion.

Proof of sSSA/sMONO

- The proof of sSSA follows from multivariate Golden-Thompson for $p=2$ and $n=4$:

$$
\begin{align*}
& \operatorname{tr}\left[\exp \left(\log M_{1}-\log M_{2}+\log M_{3}+\log M_{4}\right)\right] \\
& \leq \int \mathrm{d} t \beta_{0}(t) \operatorname{tr}\left[M_{1} M_{2}^{-(1+i t) / 2} M_{3}^{(1+i t) / 2} M_{4} M_{3}^{(1-i t) / 2} M_{2}^{-(1-i t) / 2}\right] \tag{41}
\end{align*}
$$

Remark: Lieb's triple matrix inequality is a relaxation of the case $p=2$ and $n=3$!

Proof of sSSA/sMONO

- The proof of sSSA follows from multivariate Golden-Thompson for $p=2$ and $n=4$:

$$
\begin{align*}
& \operatorname{tr}\left[\exp \left(\log M_{1}-\log M_{2}+\log M_{3}+\log M_{4}\right)\right] \\
& \leq \int \mathrm{d} t \beta_{0}(t) \operatorname{tr}\left[M_{1} M_{2}^{-(1+i t) / 2} M_{3}^{(1+i t) / 2} M_{4} M_{3}^{(1-i t) / 2} M_{2}^{-(1-i t) / 2}\right] \tag{41}
\end{align*}
$$

Remark: Lieb's triple matrix inequality is a relaxation of the case $p=2$ and $n=3$!
\square Proof: Choose $M_{1}:=\rho_{A B}, M_{2}:=\rho_{B}, M_{3}:=\rho_{B C}, M_{4}:=\omega_{A B C}$, and thus $D\left(\rho_{A B C} \| \tau_{A} \otimes \rho_{B C}\right)-D\left(\rho_{A B} \| \tau_{A} \otimes \rho_{B}\right)=D\left(\rho_{A B C} \| \exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}\right)\right)$

$$
\begin{equation*}
=\sup _{\omega_{A B C}>0} \operatorname{tr}\left[\rho_{A B C} \log \omega_{A B C}\right]-\log \operatorname{tr}\left[\exp \left(\log \rho_{A B}-\log \rho_{B}+\log \rho_{B C}+\log \omega_{A B C}\right)\right] \tag{42}
\end{equation*}
$$

$\geq \sup _{\omega_{A B C}>0} \operatorname{tr}\left[\rho_{A B C} \log \omega_{A B C}\right]-\int \mathrm{d} t \beta_{0}(t) \log \operatorname{tr}\left[\omega_{A B C} \rho_{B C}^{\frac{1+i t}{2}} \rho_{B}^{-\frac{1+i t}{2}} \rho_{A B} \rho_{B}^{-\frac{1-i t}{2}} \rho_{B C}^{\frac{1+i t}{2}}\right]$

$$
\begin{align*}
& \geq D_{K}\left(\rho_{A B C} \| \int \mathrm{d} t \beta_{0}(t) \rho_{B C}^{\frac{1+i t}{2}} \rho_{B}^{-\frac{1+i t}{2}} \rho_{A B} \rho_{B}^{-\frac{1-i t}{2}} \rho_{B C}^{\frac{1+i t}{2}}\right) \tag{45}\\
& =D_{K}\left(\rho_{A B C} \| \mathcal{R}_{B \rightarrow B C}\left(\rho_{A B}\right)\right) \tag{46}
\end{align*}
$$

Conclusion

■ Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.

Conclusion

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
- More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$
\begin{equation*}
\operatorname{tr}\left[M_{1} \# M_{2}\right] \leq \operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right] \quad[\text { Hiai \& Petz 1993] } \tag{47}
\end{equation*}
$$

with matrix geometric mean $M_{1} \# M_{2}:=M_{1}^{1 / 2}\left(M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right)^{1 / 2} M_{1}^{1 / 2}$.

Conclusion

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
■ More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$
\begin{equation*}
\operatorname{tr}\left[M_{1} \# M_{2}\right] \leq \operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right] \quad[\text { Hiai \& Petz 1993] } \tag{47}
\end{equation*}
$$

with matrix geometric mean $M_{1} \# M_{2}:=M_{1}^{1 / 2}\left(M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right)^{1 / 2} M_{1}^{1 / 2}$.
■ Improving on [Dupuis \& Wilde 2016], tight upper bound for SSA ? Conjecture:

$$
\begin{equation*}
D_{K}\left(\rho_{A B C} \| \sigma_{A B C}\right) \leq D\left(\rho_{A B C} \| \rho_{B C}\right)-D\left(\rho_{A B} \| \rho_{B}\right) \leq D_{B}\left(\rho_{A B C} \| \sigma_{A B C}\right) \tag{48}
\end{equation*}
$$

with $\sigma_{A B C}:=\left(\mathcal{I}_{A} \otimes \mathcal{R}_{B \rightarrow B C}\right)\left(\rho_{A B}\right)$ and [Belavkin \& Staszewski 1982]

$$
\begin{equation*}
D_{K}(\rho \| \sigma) \leq D(\rho \| \sigma) \leq D_{B}(\rho \| \sigma):=\operatorname{tr}\left[\rho \log \left(\rho^{1 / 2} \sigma^{-1} \rho^{1 / 2}\right)\right] \tag{49}
\end{equation*}
$$

Conclusion

- Strengthened entropy inequalities (sSSA/sMONO) through multivariate trace inequalities: asymptotic spectral pinching, complex interpolation theory with Stein-Hirschman.
■ More multivariate trace inequalities [Hiai et al. 2016]? For example extension of complementary Golden-Thompson:

$$
\begin{equation*}
\operatorname{tr}\left[M_{1} \# M_{2}\right] \leq \operatorname{tr}\left[\exp \left(\log M_{1}+\log M_{2}\right)\right] \leq \operatorname{tr}\left[M_{1} M_{2}\right] \quad[\text { Hiai \& Petz 1993] } \tag{47}
\end{equation*}
$$

with matrix geometric mean $M_{1} \# M_{2}:=M_{1}^{1 / 2}\left(M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right)^{1 / 2} M_{1}^{1 / 2}$.
■ Improving on [Dupuis \& Wilde 2016], tight upper bound for SSA ? Conjecture:

$$
\begin{equation*}
D_{K}\left(\rho_{A B C} \| \sigma_{A B C}\right) \leq D\left(\rho_{A B C} \| \rho_{B C}\right)-D\left(\rho_{A B} \| \rho_{B}\right) \leq D_{B}\left(\rho_{A B C} \| \sigma_{A B C}\right) \tag{48}
\end{equation*}
$$

with $\sigma_{A B C}:=\left(\mathcal{I}_{A} \otimes \mathcal{R}_{B \rightarrow B C}\right)\left(\rho_{A B}\right)$ and [Belavkin \& Staszewski 1982]

$$
\begin{equation*}
D_{K}(\rho \| \sigma) \leq D(\rho \| \sigma) \leq D_{B}(\rho \| \sigma):=\operatorname{tr}\left[\rho \log \left(\rho^{1 / 2} \sigma^{-1} \rho^{1 / 2}\right)\right] \tag{49}
\end{equation*}
$$

- Mark Wilde at 4pm: Universal Recoverability in Quantum Information.

