Exploiting Variational Formulas for Quantum Relative Entropy

Mario Berta

joint work with Omar Fawzi and Marco Tomamichel

IEEE ISIT Barcelona, 15. Juli 2016

- Relative Entropy
- 2 Variational Formulas for Relative Entropy
- 3 Application: Additivity in Quantum Information
- 4 Example: Relative Entropy of Recovery
- 5 Conclusion

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure Q on a finite set \mathcal{X} and a probability measure P on \mathcal{X} with $P \ll Q$, the relative entropy is defined as

$$D(P||Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} \quad [\text{Kullback-Leibler 1951}], \tag{1}$$

where we understand $P(x) \log \frac{P(x)}{Q(x)} = 0$ whenever P(x) = 0.

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure Q on a finite set \mathcal{X} and a probability measure P on \mathcal{X} with $P \ll Q$, the relative entropy is defined as

$$D(P||Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} \quad \text{[Kullback-Leibler 1951]}, \tag{1}$$

where we understand $P(x) \log \frac{P(x)}{Q(x)} = 0$ whenever P(x) = 0.

Definition (Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$ the Rényi relative entropy is defined as

$$D_{\alpha}(P||Q) := \frac{1}{\alpha - 1} \log \sum_{x \in \mathcal{X}} P(x)^{\alpha} Q(x)^{1 - \alpha} \quad [\text{Rényi 1961}].$$
(2)

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure Q on a finite set \mathcal{X} and a probability measure P on \mathcal{X} with $P \ll Q$, the relative entropy is defined as

$$D(P||Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} \quad \text{[Kullback-Leibler 1951]}, \tag{1}$$

where we understand $P(x) \log \frac{P(x)}{Q(x)} = 0$ whenever P(x) = 0.

Definition (Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$ the Rényi relative entropy is defined as

$$D_{\alpha}(P||Q) := \frac{1}{\alpha - 1} \log \sum_{x \in \mathcal{X}} P(x)^{\alpha} Q(x)^{1 - \alpha} \quad [\text{Rényi 1961}].$$
(2)

What are the quantum extensions of D(P||Q) and $D_{\alpha}(P||Q)$?

Mario Berta (Caltech)

Variational Formulas for Entropy

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space $\mathcal H,$ for quantum states ρ and positive semi-definite operators σ the measured relative entropy is defined as

$$D^{\mathbb{M}}(\rho \| \sigma) := \sup_{(\mathcal{X}, M)} D\big(P_{\rho, M} \| P_{\sigma, M}\big) \quad \text{[Donald 1986]}, \tag{3}$$

where the optimization is over finite sets \mathcal{X} and positive operator valued measures (POVMs) M on \mathcal{X} , and $P_{\rho,M}(x) = \operatorname{tr}[M(x)\rho]$.

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space $\mathcal H,$ for quantum states ρ and positive semi-definite operators σ the measured relative entropy is defined as

$$D^{\mathbb{M}}(\rho \| \sigma) := \sup_{(\mathcal{X}, M)} D\big(P_{\rho, M} \| P_{\sigma, M}\big) \quad \text{[Donald 1986]}, \tag{3}$$

where the optimization is over finite sets \mathcal{X} and positive operator valued measures (POVMs) M on \mathcal{X} , and $P_{\rho,M}(x) = \operatorname{tr}[M(x)\rho]$.

Definition (Measured Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$ the Rényi relative entropy is defined as

$$D^{\mathbb{M}}_{\alpha}(\rho \| \sigma) := \sup_{(\mathcal{X}, M)} D_{\alpha} \left(P_{\rho, M} \| P_{\sigma, M} \right), \tag{4}$$

with the same premises as before.

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space \mathcal{H} , for quantum states ρ and positive semi-definite operators σ the measured relative entropy is defined as

$$D^{\mathbb{M}}(\rho \| \sigma) := \sup_{(\mathcal{X}, M)} D\big(P_{\rho, M} \| P_{\sigma, M}\big) \quad \text{[Donald 1986]}, \tag{3}$$

where the optimization is over finite sets \mathcal{X} and positive operator valued measures (POVMs) M on \mathcal{X} , and $P_{\rho,M}(x) = \operatorname{tr}[M(x)\rho]$.

Definition (Measured Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$ the Rényi relative entropy is defined as

$$D^{\mathbb{M}}_{\alpha}(\rho \| \sigma) := \sup_{(\mathcal{X}, M)} D_{\alpha} \left(P_{\rho, M} \| P_{\sigma, M} \right), \tag{4}$$

with the same premises as before.

Are there other quantum extensions?

Mario Berta (Caltech)

Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

$$D(\rho \| \sigma) := \operatorname{tr} \left[\rho(\log \rho - \log \sigma) \right]$$
 [Umegaki 1962]

if $\sigma \gg \rho$ and $+\infty$ if $\sigma \not\gg \rho$.

(5)

Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

$$D(\rho \| \sigma) := \operatorname{tr} \left[\rho(\log \rho - \log \sigma) \right]$$
 [Umegaki 1962]

if $\sigma \gg \rho$ and $+\infty$ if $\sigma \not\gg \rho$.

Definition (Sandwiched Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$, the Rényi relative entropy is defined as

$$D_{\alpha}(\rho\|\sigma) := \frac{1}{\alpha - 1} \log Q_{\alpha}(\rho\|\sigma) \quad \text{with} \quad Q_{\alpha}(\rho\|\sigma) := \operatorname{tr}\left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}}\right)^{\alpha}\right] \tag{6}$$

[Müller-Lennert et al. 2013, Wilde et al. 2015]. (7)

(5)

Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

$$D(\rho \| \sigma) := \operatorname{tr} \left[\rho(\log \rho - \log \sigma) \right]$$
 [Umegaki 1962]

if $\sigma \gg \rho$ and $+\infty$ if $\sigma \not\gg \rho$.

Definition (Sandwiched Rényi Relative Entropy)

For $\alpha \in (0,1) \cup (1,\infty)$, the Rényi relative entropy is defined as

$$D_{\alpha}(\rho\|\sigma) := \frac{1}{\alpha - 1} \log Q_{\alpha}(\rho\|\sigma) \quad \text{with} \quad Q_{\alpha}(\rho\|\sigma) := \operatorname{tr}\left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}}\right)^{\alpha}\right] \tag{6}$$

[Müller-Lennert et al. 2013, Wilde et al. 2015]. (7)

• How is $D^{\mathbb{M}}(\rho \| \sigma)$ related to $D(\rho \| \sigma)$? How is $D^{\mathbb{M}}_{\alpha}(\rho \| \sigma)$ related to $D_{\alpha}(\rho \| \sigma)$?

(5)

Variational Formulas for Relative Entropy I

Variational Formula for Quantum Relative Entropy: [Petz 1988] we have

$$D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\exp(\log \sigma + \log \omega)].$$
(8)

Theorem (Variational Formula for Measured Relative Entropy)

We have

$$D^{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega].$$
(9)

Variational Formulas for Relative Entropy I

Variational Formula for Quantum Relative Entropy: [Petz 1988] we have

$$D(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\exp(\log \sigma + \log \omega)].$$
(8)

Theorem (Variational Formula for Measured Relative Entropy)

We have

$$D^{\mathbb{M}}(\rho \| \sigma) = \sup_{\omega > 0} \operatorname{tr}[\rho \log \omega] + 1 - \operatorname{tr}[\sigma \omega].$$
(9)

By the Golden-Thompson inequality $tr [\log \sigma + \log \omega] \le tr[\sigma \omega]$ we find:

Theorem (Achievability of Quantum Relative Entropy)

We have

$$D^{\mathbb{M}}(\rho \| \sigma) \le D(\rho \| \sigma)$$
 with equality if and only if $[\rho, \sigma] = 0.$ (10)

Mario Berta (Caltech)

Variational Formulas for Relative Entropy II

Variational formula for sandwiched Rényi relative entropy: [Frank & Lieb 2013] for $Q_{\alpha}(\rho \| \sigma) = \exp((\alpha - 1)D_{\alpha}(\rho \| \sigma))$ we have

$$Q_{\alpha}(\rho \| \sigma) = \begin{cases} \inf_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\left(\omega^{\frac{1}{2}} \sigma^{\frac{\alpha - 1}{\alpha}} \omega^{\frac{1}{2}}\right)^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (0, 1) \\ \sup_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\left(\omega^{\frac{1}{2}} \sigma^{\frac{\alpha - 1}{\alpha}} \omega^{\frac{1}{2}}\right)^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (1, \infty) \,. \end{cases}$$

$$(11)$$

Variational Formulas for Relative Entropy II

Variational formula for sandwiched Rényi relative entropy: [Frank & Lieb 2013] for $Q_{\alpha}(\rho \| \sigma) = \exp\left((\alpha - 1)D_{\alpha}(\rho \| \sigma)\right)$ we have

$$Q_{\alpha}(\rho \| \sigma) = \begin{cases} \inf_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\left(\omega^{\frac{1}{2}} \sigma^{\frac{\alpha - 1}{\alpha}} \omega^{\frac{1}{2}}\right)^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (0, 1) \\ \sup_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\left(\omega^{\frac{1}{2}} \sigma^{\frac{\alpha - 1}{\alpha}} \omega^{\frac{1}{2}}\right)^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (1, \infty) \,. \end{cases}$$

$$(11)$$

Theorem (Variational Formula for Measured Rényi Relative Entropy)

For $Q^{\mathbb{M}}_{\alpha}(\rho\|\sigma):=\exp\left((lpha-1)D^{\mathbb{M}}_{\alpha}(\rho\|\sigma)
ight)$ we have

$$Q_{\alpha}^{\mathbb{M}}(\rho \| \sigma) = \begin{cases} \inf_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\sigma \omega^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (0, 1) \\ \sup_{\omega > 0} \alpha \operatorname{tr}[\rho \omega] + (1 - \alpha) \operatorname{tr}\left[\sigma \omega^{\frac{\alpha}{\alpha - 1}}\right] & \text{for } \alpha \in (1, \infty) \,. \end{cases}$$
(12)

By the Araki-Lieb-Thirring inequality we have for $\alpha \in (1/2, \infty)$:

$$D_{\alpha}^{\mathbb{M}}(\rho \| \sigma) \le D_{\alpha}(\rho \| \sigma) \quad \text{with equality if and only if } [\rho, \sigma] = 0.$$
(13)

Application: Additivity in Quantum Information I

We consider operational quantities of the form

$$\mathcal{M}(\rho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(\rho \| \sigma) , \qquad (14)$$

where $\mathbb{D}(\,\cdot\,\|\,\cdot\,)$ stands for any relative entropy, and $\mathcal C$ denotes some convex, compact set of states.

Application: Additivity in Quantum Information I

We consider operational quantities of the form

$$\mathcal{M}(\rho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(\rho \| \sigma) \,, \tag{14}$$

where $\mathbb{D}(\cdot \| \cdot)$ stands for any relative entropy, and \mathcal{C} denotes some convex, compact set of states. Examples are

- separable states: relative entropy of entanglement [Vedral 1998]
- positive partial transpose states: Rains bound on entanglement distillation [Rains 2001]
- non-distillable states: bounds on entanglement distillation [Vedral 1999]
- quantum Markov states: robustness properties of these states [Linden et al. 2008]
- Iocally recoverable states: bounds on the conditional mutual information [Fawzi & Renner 2015]
- k-extendible states: bounds on squashed entanglement [Li & Winter 2014]

Application: Additivity in Quantum Information I

We consider operational quantities of the form

$$\mathcal{M}(\rho) := \min_{\sigma \in \mathcal{C}} \mathbb{D}(\rho \| \sigma) , \qquad (14)$$

where $\mathbb{D}(\cdot \| \cdot)$ stands for any relative entropy, and \mathcal{C} denotes some convex, compact set of states. Examples are

- separable states: relative entropy of entanglement [Vedral 1998]
- positive partial transpose states: Rains bound on entanglement distillation [Rains 2001]
- non-distillable states: bounds on entanglement distillation [Vedral 1999]
- quantum Markov states: robustness properties of these states [Linden et al. 2008]
- locally recoverable states: bounds on the conditional mutual information [Fawzi & Renner 2015]
- k-extendible states: bounds on squashed entanglement [Li & Winter 2014]
- <u>Question</u>: What properties of the relative entropy translate to the measure *M*?
- For example, all the relative entropies discussed are super-additive on tensor product states

$$\mathbb{D}(\rho_1 \otimes \rho_2 \| \sigma_1 \otimes \sigma_2) \ge \mathbb{D}(\rho_1 \| \sigma_1) + \mathbb{D}(\rho_2 \| \sigma_2).$$
(15)

Application: Additivity in Quantum Information II

Super-additivity of \mathcal{M} on tensor product states:

$$\min_{\sigma_{12}\in\mathcal{C}_{12}} \mathbb{D}(\rho_1\otimes\rho_2\|\sigma_{12}) = \mathcal{M}(\rho_1\otimes\rho_2) \stackrel{:}{\geq} \mathcal{M}(\rho_1) + \mathcal{M}(\rho_2)$$
(16)

$$= \min_{\sigma_1 \in \mathcal{C}_1} \mathbb{D}(\rho_1 \| \sigma_1) + \min_{\sigma_2 \in \mathcal{C}_2} \mathbb{D}(\rho_2 \| \sigma_2) \,. \tag{17}$$

Application: Additivity in Quantum Information II

■ Super-additivity of *M* on tensor product states:

$$\min_{\sigma_{12}\in\mathcal{C}_{12}}\mathbb{D}(\rho_1\otimes\rho_2\|\sigma_{12})=\mathcal{M}(\rho_1\otimes\rho_2)\stackrel{i}{\geq}\mathcal{M}(\rho_1)+\mathcal{M}(\rho_2)$$
(16)

$$= \min_{\sigma_1 \in \mathcal{C}_1} \mathbb{D}(\rho_1 \| \sigma_1) + \min_{\sigma_2 \in \mathcal{C}_2} \mathbb{D}(\rho_2 \| \sigma_2) \,. \tag{17}$$

Idea: Use variational characterizations

$$\mathbb{D}(\rho \| \sigma) = \sup_{\omega > 0} f(\rho, \sigma, \omega) \text{ in order to write}$$
(18)

$$\mathcal{M}(\rho) = \min_{\sigma \in \mathcal{C}} \sup_{\omega > 0} f(\rho, \sigma, \omega) = \sup_{\omega > 0} \min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega),$$
(19)

where we made use of Sion's minimax theorem for the last equality.

Application: Additivity in Quantum Information II

■ Super-additivity of *M* on tensor product states:

$$\min_{\sigma_{12}\in\mathcal{C}_{12}} \mathbb{D}(\rho_1\otimes\rho_2\|\sigma_{12}) = \mathcal{M}(\rho_1\otimes\rho_2) \stackrel{\iota}{\geq} \mathcal{M}(\rho_1) + \mathcal{M}(\rho_2)$$
(16)

$$= \min_{\sigma_1 \in \mathcal{C}_1} \mathbb{D}(\rho_1 \| \sigma_1) + \min_{\sigma_2 \in \mathcal{C}_2} \mathbb{D}(\rho_2 \| \sigma_2) \,. \tag{17}$$

Idea: Use variational characterizations

$$\mathbb{D}(\rho \| \sigma) = \sup_{\omega > 0} f(\rho, \sigma, \omega) \text{ in order to write}$$
(18)

$$\mathcal{M}(\rho) = \min_{\sigma \in \mathcal{C}} \sup_{\omega > 0} f(\rho, \sigma, \omega) = \sup_{\omega > 0} \min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega),$$
(19)

where we made use of Sion's minimax theorem for the last equality.

The minimization over σ ∈ C then often simplifies and is a convex or even semidefinite optimization. Using strong duality to rewrite this minimization as a maximization problem:

$$\min_{\sigma \in \mathcal{C}} f(\rho, \sigma, \omega) = \max_{\bar{\sigma} \in \bar{\mathcal{C}}} \bar{f}(\rho, \bar{\sigma}, \omega) \text{ leading to the expression}$$
(20)

$$\mathcal{M}(\rho) = \sup_{\omega > 0} \max_{\bar{\sigma} \in \bar{\mathcal{C}}} \bar{f}(\rho, \bar{\sigma}, \omega) \,. \tag{21}$$

Application: Additivity in Quantum Information III

Variational characterization (as on the last slide):

$$\mathcal{M}(\rho) = \sup_{\omega > 0} \max_{\bar{\sigma} \in \bar{\mathcal{C}}} \bar{f}(\rho, \bar{\sigma}, \omega) \,.$$

(22)

Application: Additivity in Quantum Information III

Variational characterization (as on the last slide):

$$\mathcal{M}(\rho) = \sup_{\omega > 0} \max_{\bar{\sigma} \in \bar{\mathcal{C}}} \bar{f}(\rho, \bar{\sigma}, \omega) \,. \tag{22}$$

The following two conditions on \bar{f} and \bar{C} imply super-additivity of \mathcal{M} :

1 \overline{f} is super-additive

$$\bar{f}(\rho_1 \otimes \rho_2, \bar{\sigma}_1 \otimes \bar{\sigma}_2, \omega_1 \otimes \omega_2) \ge \bar{f}(\rho_1, \bar{\sigma}_1, \omega_1) + \bar{f}(\rho_2, \bar{\sigma}_2, \omega_2)$$
(23)

2 the sets $\bar{\mathcal{C}}$ are closed under tensor products

 $\bar{\sigma}_1 \in \bar{\mathcal{C}}_1 \text{ and } \bar{\sigma}_2 \in \bar{\mathcal{C}}_2 \quad \text{imply that} \quad \bar{\sigma}_1 \otimes \bar{\sigma}_2 \in \bar{\mathcal{C}}_{12}$ (24)

Application: Additivity in Quantum Information III

Variational characterization (as on the last slide):

$$\mathcal{M}(\rho) = \sup_{\omega > 0} \max_{\bar{\sigma} \in \bar{\mathcal{C}}} \bar{f}(\rho, \bar{\sigma}, \omega) \,. \tag{22}$$

■ The following two conditions on *f* and *C* imply super-additivity of *M*: *f* is super-additive

$$\bar{f}(\rho_1 \otimes \rho_2, \bar{\sigma}_1 \otimes \bar{\sigma}_2, \omega_1 \otimes \omega_2) \ge \bar{f}(\rho_1, \bar{\sigma}_1, \omega_1) + \bar{f}(\rho_2, \bar{\sigma}_2, \omega_2)$$
(23)

2 the sets $\bar{\mathcal{C}}$ are closed under tensor products

 $\bar{\sigma}_1 \in \bar{\mathcal{C}}_1 \text{ and } \bar{\sigma}_2 \in \bar{\mathcal{C}}_2 \quad \text{imply that} \quad \bar{\sigma}_1 \otimes \bar{\sigma}_2 \in \bar{\mathcal{C}}_{12}$ (24)

Proof: For any $\omega_1, \omega_2 > 0$ and any $\bar{\sigma}_1 \in \bar{C}_1, \bar{\sigma}_2 \in \bar{C}_2$ we deduce that

$$\mathcal{M}(\rho_1 \otimes \rho_2) \ge \bar{f}(\rho_1 \otimes \rho_2, \bar{\sigma}_1 \otimes \bar{\sigma}_2, \omega_1 \otimes \omega_2) \ge \bar{f}(\rho_1, \bar{\sigma}_1, \omega_1) + \bar{f}(\rho_2, \bar{\sigma}_2, \omega_2)$$
(25)

Hence, the inequalities also hold true if we maximize over these variables, implying super-additivity.

For any relative entropy $\mathbb{D}(\,\cdot\,\|\,\cdot\,)$ we are interested in the recovery quantity:

 $\mathbb{D}^{\mathrm{rec}}(\rho_{AD} \| \sigma_{AE}) := \inf_{\Gamma_E \to D} \mathbb{D}(\rho_{AD} \| (\mathcal{I}_A \otimes \Gamma_{E \to D})(\sigma_{AE})).$ (26)

For any relative entropy $\mathbb{D}(\,\cdot\,\|\,\cdot\,)$ we are interested in the recovery quantity:

 $\mathbb{D}^{\mathrm{rec}}(\rho_{AD} \| \sigma_{AE}) := \inf_{\Gamma_{E \to D}} \mathbb{D}(\rho_{AD} \| (\mathcal{I}_A \otimes \Gamma_{E \to D})(\sigma_{AE})).$ (26)

<u>Question</u>: What relative entropies of recovery are (super)-additive?

For any relative entropy $\mathbb{D}(\,\cdot\,\|\,\cdot\,)$ we are interested in the recovery quantity:

 $\mathbb{D}^{\mathrm{rec}}(\rho_{AD} \| \sigma_{AE}) := \inf_{\Gamma_{E \to D}} \mathbb{D}(\rho_{AD} \| (\mathcal{I}_A \otimes \Gamma_{E \to D})(\sigma_{AE})) \,. \tag{26}$

<u>Question</u>: What relative entropies of recovery are (super)-additive?
 Of interest because we have (the systems are understood as *D* = *BC*, *E* = *B*):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \quad \text{[Brandao et al. 2015]}.$$
(27)

For any relative entropy $\mathbb{D}(\,\cdot\,\|\,\cdot\,)$ we are interested in the recovery quantity:

$$\mathbb{D}^{\mathrm{rec}}(\rho_{AD} \| \sigma_{AE}) := \inf_{\Gamma_{E \to D}} \mathbb{D}(\rho_{AD} \| (\mathcal{I}_A \otimes \Gamma_{E \to D})(\sigma_{AE})).$$
(26)

<u>Question</u>: What relative entropies of recovery are (super)-additive?
 Of interest because we have (the systems are understood as *D* = *BC*, *E* = *B*):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \quad \text{[Brandao et al. 2015]}.$$
(27)

Theorem (Super-Additivity of Measured Entropy of Recovery)

Let $\rho_{AD}, \tau_{A'D'}, \sigma_{AE}, \omega_{A'E'}$ be quantum states. Then, we have

 $D^{\mathbb{M},\mathrm{rec}}(\rho_{AD} \otimes \tau_{A'D'} \| \sigma_{AE} \otimes \omega_{A'E'}) \ge D^{\mathbb{M},\mathrm{rec}}(\rho_{AD} \| \sigma_{AE}) + D^{\mathbb{M},\mathrm{rec}}(\tau_{A'D'} \| \omega_{A'E'}).$ (28)

For $\alpha \in (0,1) \cup (1,\infty)$, we also have

$$D_{\alpha}^{\mathbb{M},\mathrm{rec}}(\rho_{AD}\otimes\tau_{A'D'}\|\sigma_{AE}\otimes\omega_{A'E'}) \ge D_{\alpha}^{\mathbb{M},\mathrm{rec}}(\rho_{AD}\|\sigma_{AE}) + D_{\alpha}^{\mathbb{M},\mathrm{rec}}(\tau_{A'D'}\|\omega_{A'E'}).$$
(29)

We conclude (without de Finetti reductions):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \ge D^{\mathbb{M},\text{rec}} \left(\rho_{ABC} \| \rho_{AB} \right) \,. \tag{30}$$

We conclude (without de Finetti reductions):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \ge D^{\mathbb{M},\text{rec}} \left(\rho_{ABC} \| \rho_{AB} \right) \,. \tag{30}$$

The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)

Let ρ_{AD} , σ_{AE} be quantum states, and let σ_{AEF} be a purification of σ_{AE} . Then, we have

$$\sum_{D=1}^{M, \text{rec}} (\rho_{AD} \| \sigma_{AE}) = \text{maximize:} \quad \text{tr}[\rho_{AD} \log R_{AD}]$$

$$\text{subject to:} \quad S_{AF} > 0, \ R_{AD} > 0$$

$$1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$$

$$\text{tr}[S_{AF} \sigma_{AF}] = 1.$$

$$(31)$$

We conclude (without de Finetti reductions):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \ge D^{\mathbb{M},\text{rec}} \left(\rho_{ABC} \| \rho_{AB} \right) \,. \tag{30}$$

The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)

Let ρ_{AD} , σ_{AE} be quantum states, and let σ_{AEF} be a purification of σ_{AE} . Then, we have

$$M^{\text{M,rec}}(\rho_{AD} \| \sigma_{AE}) = \text{maximize:} \quad \text{tr}[\rho_{AD} \log R_{AD}]$$
subject to: $S_{AF} > 0, \ R_{AD} > 0$
 $1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$
 $\text{tr}[S_{AF}\sigma_{AF}] = 1.$
(31)

The characterization for the measured Rényi entropy of recovery $D_{\alpha}^{\mathbb{M}, \text{rec}}$ is similar.

E

We conclude (without de Finetti reductions):

$$I(A:C|B) \ge \lim_{n \to \infty} \frac{1}{n} D^{\text{rec}} \left(\rho_{ABC}^{\otimes n} \| \rho_{AB}^{\otimes n} \right) \ge D^{\mathbb{M},\text{rec}} \left(\rho_{ABC} \| \rho_{AB} \right) \,. \tag{30}$$

The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)

Let ρ_{AD} , σ_{AE} be quantum states, and let σ_{AEF} be a purification of σ_{AE} . Then, we have

$$M^{\text{M,rec}}(\rho_{AD} \| \sigma_{AE}) = \text{maximize:} \quad \text{tr}[\rho_{AD} \log R_{AD}]$$
subject to: $S_{AF} > 0, \ R_{AD} > 0$
 $1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$
 $\text{tr}[S_{AF}\sigma_{AF}] = 1.$
(31)

- The characterization for the measured Rényi entropy of recovery $D_{\alpha}^{\mathbb{M}, \text{rec}}$ is similar.
- The relative entropy of recovery D^{rec} and the Rényi entropy of recovery D^{rec}_{α} do not seem to be additive (but open).

E

Lemma (Variational Representation of Entropy of Recovery)

For the same premises as before we have

 $D^{\text{rec}}(\rho_{AD} \| \sigma_{AE}) = \text{maximize:} \quad \text{tr}[\rho_{AD} \log \rho_{AD}] - D^{\mathbb{M}}(\rho_{AD} \| R_{AD})$ subject to: $S_{AF} > 0, \ R_{AD} > 0$ $1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$ $\text{tr}[S_{AF}\sigma_{AF}] = 1.$ (32)

Lemma (Variational Representation of Entropy of Recovery)

For the same premises as before we have

 $D^{\text{rec}}(\rho_{AD} \| \sigma_{AE}) = \text{maximize:} \quad \text{tr}[\rho_{AD} \log \rho_{AD}] - D^{\mathbb{M}}(\rho_{AD} \| R_{AD})$ subject to: $S_{AF} > 0, \ R_{AD} > 0$ $1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$ $\text{tr}[S_{AF}\sigma_{AF}] = 1.$ (32)

This is to be compared to the dual characterization of the measured entropy of recovery $D^{\mathbb{M}, \text{rec}}(\rho_{AD} \| \sigma_{AE})$:

$$D^{\mathbb{M}, \operatorname{rec}}(\rho_{AD} \| \sigma_{AE}) = \operatorname{maximize:} \operatorname{tr}[\rho_{AD} \log \rho_{AD}] - D(\rho_{AD} \| R_{AD})$$

subject to: $S_{AF} > 0, \ R_{AD} > 0$
 $1_D \otimes S_{AF} \ge R_{AD} \otimes 1_F$
 $\operatorname{tr}[S_{AF}\sigma_{AF}] = 1.$ (33)

- Measured relative entropy is strictly smaller than quantum relative entropy.
- Variational formulas for quantum relative entropy.
- These formulas are useful tools for studying additivity problems in quantum information theory.
- Super-additivity of measured relative entropy of recovery.
- Additivity of relative entropy of recovery remains open (does not seem to be additive).