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Relative Entropy

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure @ on a finite set X and a probability measure P on X with
P < Q, the relative entropy is defined as

D(P|Q) == >_ P(xz)log ggz; [Kullback-Leibler 1951], (1)
TEX

P(Z) —

where we understand P(z) log 535 = 0 whenever P(z) = 0.
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Relative Entropy

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure @ on a finite set X and a probability measure P on X with
P < Q, the relative entropy is defined as

DPIQ) = 3 P(x)log L&) [Kullback-Leibler 1951], 1)
Q(z)
TEX
where we understand P(x) log 5 = 0 whenever P(z) = 0.

Definition (Rényi Relative Entropy)

For oo € (0,1) U (1, c0) the Rényi relative entropy is defined as

s log > P(2)"Q()! " [Rényi 1961]. @)

TEX

Da(P|Q) :=
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Relative Entropy

Classical Relative Entropy

Definition (Relative Entropy)

For a positive measure @ on a finite set X and a probability measure P on X with
P < Q, the relative entropy is defined as

D(P|Q) = P(x) % [Kullback-Leibler 1951] (1)
TEX

P(z) _

where we understand P(z) log 575 =

0 whenever P(z) = 0.

Definition (Rényi Relative Entropy)

For oo € (0,1) U (1, c0) the Rényi relative entropy is defined as

Da(P|Q) :=

s log > P(2)"Q()! " [Rényi 1961]. @)

TEX

= What are the quantum extensions of D(P||Q) and D.(P||Q)?
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Relative Entropy

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space H, for quantum states p and positive semi-definite operators o the
measured relative entropy is defined as

D"(p|lo) := ()S(HAI;)D(Pp,M”Pa,M) [Donald 1986], (3)

where the optimization is over finite sets X and positive operator valued measures
(POVMs) M on X, and P, r;(z) = tr[M(z)p].
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Relative Entropy

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space H, for quantum states p and positive semi-definite operators o the
measured relative entropy is defined as

D"(p|lo) := ()s(uA;/)I)D(Pp,M”PU,M) [Donald 1986], (3)

where the optimization is over finite sets X and positive operator valued measures
(POVMs) M on X, and P, r;(z) = tr[M(z)p].

Definition (Measured Rényi Relative Entropy)

For o € (0,1) U (1, c0) the Rényi relative entropy is defined as

DX(pllo) := sup Da (Po.m || Pona) 4)
(X, M)

with the same premises as before.
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Relative Entropy

Measured Relative Entropy

Definition (Measured Relative Entropy)

On a Hilbert space H, for quantum states p and positive semi-definite operators o the
measured relative entropy is defined as

D"(p|lo) := ()s(uA;/)I)D(Pp,M”PU,M) [Donald 1986], (3)

where the optimization is over finite sets X and positive operator valued measures
(POVMs) M on X, and P, r;(z) = tr[M(z)p].

Definition (Measured Rényi Relative Entropy)

For o € (0,1) U (1, c0) the Rényi relative entropy is defined as

DX(pllo) := sup Da (Po.m || Pona) 4)
(x,M)
with the same premises as before.

m Are there other quantum extensions?

Mario Berta (Caltech) Variational Formulas for Entropy IEEE ISIT Barcelona, 15. Juli 2016 4/14



Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

D(p||o) := tr[p(log p — logo)] [Umegaki 1962] (5)
if o > pand +ooif o % p.
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Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

D(p||o) := tr[p(log p — logo)] [Umegaki 1962] (5)
if o > pand +ooif o % p.

Definition (Sandwiched Rényi Relative Entropy)

For oo € (0,1) U (1, c0), the Rényi relative entropy is defined as

Da(pl|o) 1:ai110gQa(pIIU) with - Qa(pllo) ::tr[("%pa%f] ©)

[Muller-Lennert et al. 2013, Wilde et al. 2015].  (7)

Mario Berta (Caltech) Variational Formulas for Entropy

IEEE ISIT Barcelona, 15. Juli 2016 5/14



Quantum Relative Entropy

Definition (Quantum Relative Entropy)

For the same setup as before, the quantum relative entropy is defined as

D(p||o) := tr[p(log p — logo)] [Umegaki 1962] (5)
if o > pand +ooif o % p.

Definition (Sandwiched Rényi Relative Entropy)

For oo € (0,1) U (1, c0), the Rényi relative entropy is defined as

Da(pl|o) 1:ai1105Qa(p||0) with - Qa(pllo) ::tr[("%pa%f] ©)

[Muller-Lennert et al. 2013, Wilde et al. 2015].  (7)

m How is DY (p||o) related to D(p||o)? How is DX (p| o) related to Da(p||)?
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Variational Formulas for Relative Entropy

Variational Formulas for Relative Entropy |

m Variational Formula for Quantum Relative Entropy: [Petz 1988] we have

D(pllo) = sup tr[plogw]+1—tr[exp(log o + logw)] . (8)
w>0

Theorem (Variational Formula for Measured Relative Entropy)

We have

D"(pllo) = sg}())tr[plogw] + 1 — trow] . 9)
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Variational Formulas for Relative Entropy

Variational Formulas for Relative Entropy |

m Variational Formula for Quantum Relative Entropy: [Petz 1988] we have

D(pllo) = sup tr[plogw]+1—tr[exp(log o + logw)] . (8)
w>0

Theorem (Variational Formula for Measured Relative Entropy)

We have

D" (pllo) = st;;())tr[plogw] + 1 — trfow] . 9)

m By the Golden-Thompson inequality tr [log o + log w] < tr[ow] we find:

Theorem (Achievability of Quantum Relative Entropy)

We have

D"(pllo) < D(pllo)  with equality if and only if [p, o] = 0. (10)
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Variational Formulas for Relative Entropy

Variational Formulas for Relative Entropy Il

m Variational formula for sandwiched Rényi relative entropy: [Frank & Lieb 2013] for
Qa(pllo) = exp (& — 1) Da(p]l7)) we have

ir;fooztr[pw]—i—(l—a)tr [(w%a%w%)ﬁ} fora € (0,1)
Qalpllo) =" o =2
sup atr[pw] + (1 — a) tr [(w%ale%)a_l] fora € (1,00).

w>0

(11)
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Variational Formulas for Relative Entropy

Variational Formulas for Relative Entropy Il

m Variational formula for sandwiched Rényi relative entropy: [Frank & Lieb 2013] for
Qa(pllo) = exp (& — 1) Da(p]l7)) we have

a

ir;foatr[pw] +(1—-a)tr [(wéaaglw%) ail] fora € (0,1)
Qal(pllo) = {~ 1 oas1 1\Ey

sup atrfpw] + (1 — a) tr [(aﬂ(r « w2) ] fora € (1,00).

w>0

(11)

Theorem (Variational Formula for Measured Rényi Relative Entropy)
For Q% (pl|o) := exp ((a — 1) Dy (p||o)) we have

" ir;foatr[pw] +(1—a)tr [Uuﬁ] for o € (0,1)
alpllo) =47 a 12
Qa (Pllo) sup atrjpw] + (1 — a) tr I:O'UJE] for a € (1,00). (12)
w>0
By the Araki-Lieb-Thirring inequality we have for o. € (1/2,00):
DY (pllo) < Da(pllo) with equality if and only if [p, o] = 0. (13)
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information |

m We consider operational quantities of the form
M(p) := minD(pl|o), (14)

where D( - || - ) stands for any relative entropy, and C denotes some convex,
compact set of states.
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information |

m We consider operational quantities of the form

M(p) := minD(pllo), (14)

where ID( - || - ) stands for any relative entropy, and C denotes some convex,
compact set of states. Examples are

m separable states: relative entropy of entanglement [Vedral 1998]

m positive partial transpose states: Rains bound on entanglement distillation [Rains 2001]

= non-distillable states: bounds on entanglement distillation [Vedral 1999]

m quantum Markov states: robustness properties of these states [Linden et al. 2008]

m locally recoverable states: bounds on the conditional mutual information [Fawzi &
Renner 2015]

m k-extendible states: bounds on squashed entanglement [Li & Winter 2014]
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information |

m We consider operational quantities of the form

M(p) := minD(pllo), (14)

where ID( - || - ) stands for any relative entropy, and C denotes some convex,
compact set of states. Examples are

separable states: relative entropy of entanglement [Vedral 1998]

m positive partial transpose states: Rains bound on entanglement distillation [Rains 2001]

= non-distillable states: bounds on entanglement distillation [Vedral 1999]

m quantum Markov states: robustness properties of these states [Linden et al. 2008]

m locally recoverable states: bounds on the conditional mutual information [Fawzi &
Renner 2015]

m k-extendible states: bounds on squashed entanglement [Li & Winter 2014]

= Question: What properties of the relative entropy translate to the measure M?

m For example, all the relative entropies discussed are super-additive on tensor
product states

D(p1 ® pallos ® 02) = D(pallr) + D(palo) (15)
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information I

m Super-additivity of M on tensor product states:

min D(p1 ® pallonz) = M(p1 @ p2) = M(p1) + M(p2) (16)
g12 12
= min D(p1fjor) + min D(pzflo). (17)
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information I

m Super-additivity of M on tensor product states:

min D(p1 ® paflorz) = Mlp1 © p2) > M(pr) + M(p2) (16)
g12 12
= min D(p1flor) + min D(pzflo2). (17)

m |dea: Use variational characterizations

D(pllo) = sup f(p, o,w) in order to write (18)
w>0
M(p) =minsup f(p,o,w) =supmin [(p,o,w), (19)
o€C ,>0 w>0 oEC

where we made use of Sion’s minimax theorem for the last equality.
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information I

m Super-additivity of M on tensor product states:

min D(pl X p2||0'12) = .\/l(/)l & /)2) Z -Vl(/)l) + ~\/l</)3> (16)
012€C12
= min D(p1flor) + min D(pzflo2). (17)
g1€C1

m |dea: Use variational characterizations

D(pllo) = sup f(p,o,w) in order to write (18)
M(p) = minsup f(p,o,w) = sup 111111 flp,yo,w), (19)
7€C u>0 w

where we made use of Sion’s minimax theorem for the last equality.

= The minimization over o € C then often simplifies and is a convex or even
semidefinite optimization. Using strong duality to rewrite this minimization as a
maximization problem:

melg flp,o,w) = max f(p,,w) leading to the expression (20)
o ze

M(p) = sup max flp,o,w). (21)

w>0 GE
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information Il

m Variational characterization (as on the last slide):

M(p) = sup max f(p,7,w). (22)

w>0 6€C
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Application: Additivity in Quantum Information

Application: Additivity in Quantum Information Il

m Variational characterization (as on the last slide):

M(p) = sup max f(p,7,w). (22)

w>0 6eC
m The following two conditions on f and C imply super-additivity of M:
f is super-additive
Flp1 ® p2,51 ® G2,w1 @wa) > f(p1,51,w1) + f(p2, 52, w2) (23)
the sets C are closed under tensor products
51 €C1and 52 € Co implythat &1 ® 62 € C12 (24)
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Application: Additivity in Quantum Information Il

m Variational characterization (as on the last slide):

M(p) = sup max f(p,7,w). (22)

w>0 6€C
m The following two conditions on f and C imply super-additivity of M:
El [ is super-additive
Flp1 ® p2,51 ® G2,w1 @wa) > f(p1,51,w1) + f(p2, 52, w2) (23)
the sets C are closed under tensor products
51 €C1and 52 € Co implythat &1 ® 62 € C12 (24)
m Proof: For any w1, w2 > 0 and any &, € C1, 52 € C2 we deduce that

M(p1 ® p2) > f(p1 ® p2,51 ® 52,w1 @ wa) > f(p1,51,w1) + f(p2,52,w2) (25)

Hence, the inequalities also hold true if we maximize over these variables,
implying super-additivity. O
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |

m For any relative entropy D( - || - ) we are interested in the recovery quantity:
D™ (paplloar) := inf D(pap|(Za @ p-p)(0ar)). (26)
E—D
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |

m For any relative entropy D( - || - ) we are interested in the recovery quantity:
D*“(papllocar) := . inf D(papl|/(Za @TEep)(car)). (26)
E—D

m Question: What relative entropies of recovery are (super)-additive?
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |

m For any relative entropy D( - || - ) we are interested in the recovery quantity:

D‘rw(/);x[)HO’AE> = lviTlf D(/)A\DH(ZA X ]‘Eﬁp)(O'A\E)) . (26)
E—D

m Question: What relative entropies of recovery are (super)-additive?
m Of interest because we have (the systems are understood as D = BC, E = B):

I(A:C|B) > lim %Drec (0%ncllo%s)  [Brandao etal 2015].  (27)
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |

m For any relative entropy D( - || - ) we are interested in the recovery quantity:
)"““(pap|cag) = l,ill[‘ D(pap||[(Za @ Te—p)(0aE)) - (26)
E—D
m Question: What relative entropies of recovery are (super)-additive?
m Of interest because we have (the systems are understood as D = BC, E = B):

I(A:C|B) > lim %Drec (0%nolloSs)  [Brandao etal 2015].  (27)

Theorem (Super-Additivity of Measured Entropy of Recovery)

Letpap,Tapr,0aE,wa g be quantum states. Then, we have

DM’rec(pAD X TA’D’”UAE ®UJA/E/) Z DM’rec(pAD”O'AE) + DM’reC(TA/D/ ”UJA’E’) °
(28)

Foro € (0,1) U (1, 00), we also have
DY (pap @ Tarp||0aE @ warg) > Da™(papl|oar) + Da*(Tarpr||wars) -

(29)
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery Il

= We conclude (without de Finetti reductions):

. 1 rec n n rec
I(A:C|B) > lim —D" (p35cllpi) = D" (pascllpan) . (30)
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |l

= We conclude (without de Finetti reductions):

(30)

. 1 r r
I(A:CIB) = lim —D™ (p3pcllpis) > D™ (papc|pas) -

m The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)
Let pap,oar be quantum states, and let c agr be a purification of o ar. Then, we have
D" (paplloar) = maximize:  tr[pap log Rap]

subjectto: Sar >0, Rap >0 (31)
1p ® Sar > Rap ® 1F

tI‘[SAFO'AF] =1,

IEEE ISIT Barcelona, 15. Juli 2016 12/14
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |l

= We conclude (without de Finetti reductions):

(30)

. 1 r r
I(A:CIB) = lim —D™ (p3pcllpis) > D™ (papc|pas) -

m The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)
Let pap,oar be quantum states, and let c agr be a purification of o ar. Then, we have
D" (paplloar) = maximize:  tr[pap log Rap]

subjectto: Sar >0, Rap >0 (31)
1p ® Sar > Rap ® 1F

tr[SAFO'AF] =1,

m The characterization for the measured Rényi entropy of recovery DY ¢ is similar.
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |l

= We conclude (without de Finetti reductions):

(30)

. 1 r r
I(A:CIB) = lim —D™ (p3pcllpis) > D™ (papc|pas) -

m The super-additivity is seen be the following dual variational characterization:

Lemma (Variational Representation of Measured Entropy of Recovery)

Let pap,oar be quantum states, and let c agr be a purification of o ar. Then, we have

DM’rec(pADHUAE) = maximize: tr[pap log Rap]
subjectto: Sar >0, Rap >0 (31)
1p ® Sar > Rap ® 1r

tr[SAFO'AF] =1,

m The characterization for the measured Rényi entropy of recovery DY ¢ is similar.
m The relative entropy of recovery D™ and the Rényi entropy of recovery D5° do
not seem to be additive (but open).
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |l

Lemma (Variational Representation of Entropy of Recovery)
For the same premises as before we have

Drec(pADHO'AE) = maximize: tr[pAD logpAD] — DM(pAD”RAD)
subjectto: Sar >0, Rap >0 (32)
1p ® Sar > Rap ® 1p
tr[Sarpoar] =1.

IEEE ISIT Barcelona, 15. Juli 2016 13/14
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Example: Relative Entropy of Recovery

Example: Relative Entropy of Recovery |l

Lemma (Variational Representation of Entropy of Recovery)
For the same premises as before we have

Drec(pADHO'AE) = maximize: tr[pAD logpAD] — DM(pADHRAD)
subjectto: Sar >0, Rap >0 (32)
1p ® Sar > Rap ® 1p
tr[Sarpoar] =1.

m This is to be compared to the dual characterization of the measured entropy of
recovery D" (paplloag):
D" (papl|loar) = maximize:  tr[pap log pap] — D(pap|Rap)

subjectto: Sar >0, Rap >0 (33)
1p ® Sar > Rap ® 1r

tr[SAFO'AF] =1.
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Conclusion

Conclusion

m Measured relative entropy is strictly smaller than quantum relative entropy.
m Variational formulas for quantum relative entropy.

m These formulas are useful tools for studying additivity problems in
quantum information theory.

m Super-additivity of measured relative entropy of recovery.

m Additivity of relative entropy of recovery remains open (does not seem to
be additive).
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