The Quantum Reverse Shannon Theorem and other Channel Simulations

Mario Berta (Fernando Brandão, Matthias Christandl, Renato Renner, Stephanie Wehner)

Quantum Reverse Shannon Theorem

* Previously proved by Bennett, Devetak, Harrow, Shor and Winter [1].
* New proof based on one-shot Quantum State Merging [2,3] and the Post-Selection Technique for Quantum Channels [4].
* Outline:
- Understanding the Theorem (Classical and Quantum Shannon Theory)
- Idea of our Proof
- Quantum State Merging
- Post-Selection Technique
- Other Channel Simulations

Shannon's Classical Noisy
 Channel Coding Theorem

Transmitter Alice
Receiver Bob

Λ : noisy channel

How many bits can Alice transmit on average per use of the channel?

Shannon's Classical Noisy Channel Coding Theorem

Transmitter Alice
 Receiver Bob

Λ : noisy channel id: perfect channel

How many bits can Alice transmit on average per use of the channel?

Shannon's Classical Noisy Channel Coding Theorem

Transmitter Alice

Receiver Bob

Λ : noisy channel id: perfect channel

How many bits can Alice transmit on average per use of the channel? \Rightarrow Asymptotic channel capacity [5]:

$$
\begin{gathered}
C(\Lambda)=\max _{X}(H(X)+H(\Lambda(X))-H(X, \Lambda(X))) \\
H(X)=-\sum_{x} p_{x} \log p_{x}
\end{gathered}
$$

Shannon's Classical Noisy Channel Coding Theorem

Transmitter Alice

 id: perfect channel

How many bits can Alice transmit on average per use of the channel? \Rightarrow Asymptotic channel capacity [5]:

$$
\begin{gathered}
C(\Lambda)=\max _{X}(H(X)+H(\Lambda(X))-H(X, \Lambda(X))) \\
H(X)=-\sum_{x} p_{x} \log p_{x}
\end{gathered}
$$

Note: Neither back communication nor shared randomness help
[5] Shannon, Bell. Syst. Tech. J. 27:379-423,623-656, 1948

Classical Reverse Shannon Theorem

Using shared randomness, at what asymptotic rate can the id-channel simulate a channel Λ ?

Classical Reverse Shannon Theorem

Using shared randomness, at what asymptotic rate can the id-channel simulate a channel Λ ?
$\Rightarrow C(\Lambda)$ as well [6]!

Classical Reverse Shannon Theorem

Using shared randomness, at what asymptotic rate can the id-channel simulate a channel Λ ? $\Rightarrow C(\Lambda)$ as well [6]! I.e. the asymptotic capacity of a channel Λ to simulate another channel Λ^{\prime} in the presence of free shared randomness is given by:

$$
C_{R}\left(\Lambda, \Lambda^{\prime}\right)=\frac{C(\Lambda)}{C\left(\Lambda^{\prime}\right)}
$$

[6] Bennett et al., IEEE Trans. Inf. Theory 48(10):2637, 2002

Quantum Shannon Theorem

Using entanglement, at what asymptotic rate can Alice transmit classical information?

Quantum Shannon Theorem

Using entanglement, at what asymptotic rate can Alice transmit classical information?
\Rightarrow Asymptotic entanglement-assisted classical capacity [6]:

$$
\begin{gathered}
C_{E}=\max _{\rho}\left(H(\rho)+H(\mathcal{E}(\rho))-H\left((\mathcal{E} \otimes \mathrm{id}) \Phi_{\rho}\right)\right) \\
H(\rho)=-\operatorname{tr}(\rho \log \rho)
\end{gathered}
$$

Quantum Reverse Shannon Theorem

Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum channel?

Quantum Reverse Shannon Theorem

Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum channel?
$\Rightarrow \mathrm{C}_{\mathrm{E}}$ as well!

Quantum Reverse Shannon Theorem

Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum channel?
$\Rightarrow C_{E}$ as well! I.e. the asymptotic capacity of a quantum channel to simulate another quantum channel in the presence of free entanglement is given by:

$$
C_{E}(\mathcal{E}, \mathcal{F})=\frac{C_{E}(\mathcal{E})}{C_{E}(\mathcal{F})}
$$

Bob

Quantum Reverse Shannon Theorem

Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum channel?
$\Rightarrow C_{\mathrm{E}}$ as well! I.e. the asymptotic capacity of a quantum channel to simulate another quantum channel in the presence of free entanglement is given by:

Note: Maximally entangled states are not sufficient, embezzling states needed!

Embezzling States

* Introduced by Van Dam and Hayden [7]
* Definition: A pure, bipartite state of the form

$$
|\mu(k)\rangle_{A B}=\frac{1}{\sqrt{G(k)}} \sum_{j=1}^{k} \frac{1}{\sqrt{j}}|j j\rangle_{A B}
$$

where $G(k)=\sum_{j=1}^{k} \frac{1}{j}$, is called embezzling state of index k.

Embezzling States

* Introduced by Van Dam and Hayden [7]
* Definition: A pure, bipartite state of the form

$$
|\mu(k)\rangle_{A B}=\frac{1}{\sqrt{G(k)}} \sum_{j=1}^{k} \frac{1}{\sqrt{j}}|j j\rangle_{A B}
$$

where $G(k)=\sum_{j=1}^{k} \frac{1}{j}$, is called embezzling state of index k.

* Proposition: Let $\epsilon>0$ and let $|\varphi\rangle_{A B}$ be a pure bipartite state of Schmidt rank m. Then the transformation

$$
|\mu(k)\rangle_{A B} \mapsto|\mu(k)\rangle_{A B} \otimes|\varphi\rangle_{A B}
$$

can be accomplished with fidelity better than $(1-\epsilon)$ for $k>m^{1 / \epsilon}$ with local isometries at A and B.

* Definition: The fidelity between two density matrices ϱ and σ is defined as

$$
F(\rho, \sigma)=(\operatorname{tr}(\sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}))^{2}
$$

and it is a notion of distance on the set of density matrices.

Our Proof

* $\mathcal{E}_{A \rightarrow B}$ CPTP map to simulate, $\mathcal{E}_{A \rightarrow B}: \quad S\left(\mathcal{H}_{A}\right) \rightarrow S\left(\mathcal{H}_{B}\right)$ Alice

$$
\rho_{A} \mapsto \mathcal{E}_{A \rightarrow B}\left(\rho_{A}\right)
$$

* Stinespring Dilation:
$\mathcal{E}_{A \rightarrow B}\left(\rho_{A}\right)=\operatorname{tr}_{A^{\prime}}\left(U_{A \rightarrow B A^{\prime}} \rho_{A} U_{A \rightarrow B A^{\prime}}\right)=: \operatorname{tr}_{A^{\prime}}\left(\sigma_{B A^{\prime}}\right)$
for some isometry $U_{A \rightarrow B A^{\prime}}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{B} \otimes \mathcal{H}_{A^{\prime}}$, with $\operatorname{dim}\left(\mathcal{H}_{A^{\prime}}\right) \leq \operatorname{dim}\left(\mathcal{H}_{A}\right) \cdot \operatorname{dim}\left(\mathcal{H}_{B}\right)$.
* Key Idea:
(i) Local simulation of $\mathcal{E}_{A \rightarrow B}$ at Alice's side using Stinespring Dilation
$\Rightarrow \sigma_{B A^{\prime}}$ at Alice's side.
(ii) Send part B of $\sigma_{B A^{\prime}}$ to Bob with classical channel and entanglement
\Rightarrow Bob has $\sigma_{B}=\mathcal{E}_{A \rightarrow B}\left(\rho_{A}\right)!$

Quantum State Merging/State Splitting

Quantum State Merging/State Splitting

R: reference system

* How much of a given resource is needed to do this?

Quantum State Merging/State Splitting

* How much of a given resource is needed to do this?
* Our case: $\sigma_{B A^{\prime}} \rightarrow \sigma_{B A^{\prime} R}=|\psi\rangle\left\langle\left.\psi\right|_{B A^{\prime} R}\right.$ purification, free entanglement, classical communication to quantify.

Quantum State Merging/State Splitting

* How much of a given resource is needed to do this?
* Our case: $\sigma_{B A^{\prime}} \rightarrow \sigma_{B A^{\prime} R}=|\psi\rangle\left\langle\left.\psi\right|_{B A^{\prime} R}\right.$ purification, free entanglement, classical communication to quantify.
* Horodecki et al. [2], $\left|\psi^{\otimes n}\right\rangle_{B A^{\prime} R}$ with classical communication cost c_{n} :

$$
c=\lim _{n \rightarrow \infty} \frac{1}{n} c_{n}=H\left(\sigma_{B}\right)+H\left(\sigma_{R}\right)-H\left(\sigma_{B R}\right)=I(B: R)_{\sigma}
$$

Quantum State Merging/State Splitting

* How much of a given resource is needed to do this?
* Our case: $\sigma_{B A^{\prime}} \rightarrow \sigma_{B A^{\prime} R}=|\psi\rangle\left\langle\left.\psi\right|_{B A^{\prime} R}\right.$ purification, free entanglement, classical communication to quantify.
* Horodecki et al. [2], $\left|\psi^{\otimes n}\right\rangle_{B A^{\prime} R}$ with classical communication cost c_{n} :

$$
c=\lim _{n \rightarrow \infty} \frac{1}{n} c_{n}=H\left(\sigma_{B}\right)+H\left(\sigma_{R}\right)-H\left(\sigma_{B R}\right)=I(B: R)_{\sigma}
$$

* One-shot version, $|\psi\rangle_{B A^{\prime} R}$ with classical communication $\operatorname{cost} c_{\epsilon}$ for an error ϵ :

$$
c_{\epsilon} \cong I_{\max }^{\epsilon}(B: R)_{\sigma}
$$

Back to the Proof

* CPTP map $\mathcal{E}_{A \rightarrow B}^{\otimes n}\left(\rho_{A}^{n}\right)=\operatorname{tr}_{A^{\prime}}\left(U_{A \rightarrow B A^{\prime}}^{n} \rho_{A}^{n} U_{A \rightarrow B A^{\prime}}^{n}\right)=: \operatorname{tr}_{A^{\prime}}\left(\sigma_{B A^{\prime}}^{n}\right)$ to simulate.
* Local simulation of $U_{A \rightarrow B A^{\prime}}^{n}$ and state splitting of $\sigma_{B A^{\prime}}^{n}$ gives ε-approximation $\mathcal{F}_{A \rightarrow B}^{n, \epsilon}$ of $\mathcal{E}_{A \rightarrow B}^{\otimes n}$ for a class. comm. cost $I_{\max }^{\epsilon}(B: R)_{\sigma^{n}}$.

Back to the Proof

* CPTP map $\mathcal{E}_{A \rightarrow B}^{\otimes n}\left(\rho_{A}^{n}\right)=\operatorname{tr}_{A^{\prime}}\left(U_{A \rightarrow B A^{\prime}}^{n} \rho_{A}^{n} U_{A \rightarrow B A^{\prime}}^{n}\right)=: \operatorname{tr}_{A^{\prime}}\left(\sigma_{B A^{\prime}}^{n}\right)$ to simulate.
* Local simulation of $U_{A \rightarrow B A^{\prime}}^{n}$ and state splitting of $\sigma_{B A^{\prime}}^{n}$ gives ε-approximation $\mathcal{F}_{A \rightarrow B}^{n, \epsilon}$ of $\mathcal{E}_{A \rightarrow B}^{\otimes n}$ for a class. comm. cost $I_{\max }^{\epsilon}(B: R)_{\sigma^{n}}$.
*Definition: Let \mathcal{E} be a quantum operation. The diamond norm [8] of \mathcal{E} is defined as

$$
\begin{gathered}
\|\mathcal{E}\|_{\diamond}=\sup _{k \in \mathbb{N}\|\sigma\|_{1} \leq 1} \sup \left\|\left(\mathcal{E} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1} \\
\|\sigma\|_{1}=\operatorname{tr}\left(\sqrt{\sigma^{\dagger} \sigma}\right) .
\end{gathered}
$$

The induced metric is a notion of distance for quantum operations.

Back to the Proof

* CPTP map $\mathcal{E}_{A \rightarrow B}^{\otimes n}\left(\rho_{A}^{n}\right)=\operatorname{tr}_{A^{\prime}}\left(U_{A \rightarrow B A^{\prime}}^{n} \rho_{A}^{n} U_{A \rightarrow B A^{\prime}}^{n}\right)=: \operatorname{tr}_{A^{\prime}}\left(\sigma_{B A^{\prime}}^{n}\right)$ to simulate.
* Local simulation of $U_{A \rightarrow B A^{\prime}}^{n}$ and state splitting of $\sigma_{B A^{\prime}}^{n}$ gives ε-approximation $\mathcal{F}_{A \rightarrow B}^{n, \epsilon}$ of $\mathcal{E}_{A \rightarrow B}^{\otimes n}$ for a class. comm. cost $I_{\max }^{\epsilon}(B: R)_{\sigma^{n}}$.
* Definition: Let \mathcal{E} be a quantum operation. The diamond norm [8] of \mathcal{E} is defined as

$$
\begin{aligned}
& \|\mathcal{E}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\sigma \|_{1} \leq 1}\left\|\left(\mathcal{E} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1} \\
& \|\sigma\|_{1}=\operatorname{tr}\left(\sqrt{\sigma^{\dagger} \sigma}\right) .
\end{aligned}
$$

The induced metric is a notion of distance for quantum operations.
*To show: $\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\|\mathcal{E}_{A \rightarrow B}^{\otimes n}-\mathcal{F}_{A \rightarrow B}^{n, \epsilon}\right\|_{\diamond}=0, \lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} I_{\max }^{\epsilon}(B: R)_{\sigma^{n}}=C_{E}$.

The Post-Selection Technique

* Christandl et al. [4]: Let $\mathcal{E}_{A^{n}}$ and $\mathcal{F}_{A^{n}}$ be quantum operations that act permutation-covariant on a n-partite system $\mathcal{H}_{A^{n}}=\mathcal{H}_{A}^{\otimes n}$. Then

$$
\left\|\mathcal{E}_{A^{n}}-\mathcal{F}_{A^{n}}\right\|_{\diamond} \leq \operatorname{poly}(n)\left\|\left(\left(\mathcal{E}_{A^{n}}-\mathcal{F}_{A^{n}}\right) \otimes \operatorname{id}_{R^{n} R^{\prime}}\right)\left(\zeta_{A^{n} R^{n} R^{\prime}}\right)\right\|_{1}
$$

where $\zeta_{A^{n} R^{n} R^{\prime}}$ is a purification of the (de Finetti type) state

$$
\zeta_{A^{n} R^{n}}=\int \omega_{A R}^{\otimes n} d\left(\omega_{A R}\right)
$$

with $\omega_{A R}$ a pure state on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}, \mathcal{H}_{R} \cong \mathcal{H}_{A}, \mathcal{H}_{R^{n}}=\mathcal{H}_{R}^{\otimes n}$ and d (.) the measure on the normalized pure states on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$ induced by the Haar measure on the unitary group acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$, normalized to - $\int d()=$.

The Post-Selection Technique

* Christandl et al. [4]: Let $\mathcal{E}_{A^{n}}$ and $\mathcal{F}_{A^{n}}$ be quantum operations that act permutation-covariant on a n-partite system $\mathcal{H}_{A^{n}}=\mathcal{H}_{A}^{\otimes n}$. Then

$$
\left\|\mathcal{E}_{A^{n}}-\mathcal{F}_{A^{n}}\right\|_{\diamond} \leq \operatorname{poly}(n)\left\|\left(\left(\mathcal{E}_{A^{n}}-\mathcal{F}_{A^{n}}\right) \otimes \operatorname{id}_{R^{n} R^{\prime}}\right)\left(\zeta_{A^{n} R^{n} R^{\prime}}\right)\right\|_{1}
$$

where $\zeta_{A^{n} R^{n} R^{\prime}}$ is a purification of the (de Finetti type) state

$$
\zeta_{A^{n} R^{n}}=\int \omega_{A R}^{\otimes n} d\left(\omega_{A R}\right)
$$

with $\omega_{A R}$ a pure state on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}, \mathcal{H}_{R} \cong \mathcal{H}_{A}, \mathcal{H}_{R^{n}}=\mathcal{H}_{R}^{\otimes n}$ and d (.) the measure on the normalized pure states on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$ induced by the Haar measure on the unitary group acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{R}$, normalized to

Conclusions

Any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel's entanglement assisted classical capacity.

* Stinespring Dilation: $\mathcal{E}_{A \rightarrow B}^{\otimes n}\left(\rho_{A}^{n}\right)=\operatorname{tr}_{A^{\prime}}\left(U_{A \rightarrow B A^{\prime}}^{n} \rho_{A}^{n} U_{A \rightarrow B A^{\prime}}^{n}\right)=: \operatorname{tr}_{A^{\prime}}\left(\sigma_{B A^{\prime}}^{n}\right)$
* Local simulation of $U_{A \rightarrow B A^{\prime}}^{n}$ and (optimal) one-shot State Splitting of $\sigma_{B A^{\prime}}^{n}$ gives ε-approximation $\mathcal{F}_{A \rightarrow B}^{n, \epsilon}$ of $\mathcal{E}_{A \rightarrow B}^{\otimes n}$. Using Post-Selection Technique everything works!

