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Classical to Classical (CC)-Randomness 
Extractors (I)

Given an (unknown) weak source of classical randomness, how to convert it 
into uniformly random bits?

Only minimal guarantee about the randomness of the source, high min-entropy:                                                                      
.

Applications in information theory, cryptography and computational 
complexity theory [1,2].

[1] Nisan and Zuckerman, JCSS 52:43, 1996
[2] Vadhan, http://people.seas.harvard.edu/~salil/pseudorandomness/
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Ex:  Two-universal hashing / privacy amplification [5]. For all cq-states        with

                                  , we have                                      for                   .

            Strong          extractor (against quantum side information),                .

[5] Renner, PhD Thesis, ETHZ, 2005
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Quantum to Classical (QC)-Randomness 
Extractors - Definition (II)

Definition: A set of unitaries                   defines a strong         qc-extractor 
(against quantum side information) if for any state        with                       , ⇢NE Hmin(N |E)⇢ � k

(k, "){U1, . . . , UD}

Without side information, this corresponds to   -metric uncertainty relations [7].

Fully quantum versions of this: decoupling theorems (quantum coding theory) 
[8], quantum state randomization [9], quantum extractors [10]: quantum to 
quantum (qq)-randomness extractors!

[7] Fawzi et al., STOC, 2011
[8] Dupuis, PhD Thesis, McGill, 2009

[9] Hayden et al., CMP 250:371, 2004
[10] Ben-Aroya et al., TOC 6:47, 2010
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Output size:
Seed size:

• Probabilistic construction (random unitaries).

• Converse bounds.
Output size:                    , where

Seed size: D � "�1

D = M · logN · "�4
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Hmin(N |E)⇢̄

(smooth entropies [5,11]).

[5] Renner, PhD Thesis, ETHZ, 2005
[11] Tomamichel, PhD Thesis ETHZ, 2012

Huge gap! We know that our proof 
technique can only yield
D � "�2 ·min{N · 2�k�1,M/4} [12].

[12] Fawzi, PhD Thesis, McGill, 2012

• Find explicit constructions!
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Quantum to Classical (QC)-Randomness 
Extractors - Explicit Constructions

(Almost) unitary two-designs reproduce second moment of random unitaries 
[8,13]:

[8] Dupuis, PhD Thesis, McGill, 2009
[13] Szehr et al., arXiv:1109.4348v1

Set of unitaries defined by a full set of mutually unbiased bases together with 
two-wise independent permutations:

Bitwise qc-extractors! Let                           . Set of unitaries defined by a full 
set of mutually unbiased bases for each qubit,                        , together with 
two-wise independent permutations:

N = 2n,M = 2m

{�X ,�Y ,�Z}⌦n

D = O(N4)M = min{N,N · 2k · ✏2}

M = min{N,N · 2k · ✏2} D = N · (N + 1)2

Mix Disc.Meas. (M,N\M ) M

D
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M = O(N log 3�1 · "4) ·min{1, 2k} D = N · (N � 1) · 3logN

http://arxiv.org/abs/1109.4348v1
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Application: Two-Party Cryptography

[17] Lo, PRA 56:1154, 1997
[18] Damgård et al., CRYPTO, 2007

Should not learn y
Should not learn x

• Example: secure function evaluation.

f

x y

f(x,y)

[19] König et al., IEEE TIT 58:1962, 2012

Not possible to solve without assumptions [17].

Classical assumptions are typically computational assumptions (e.g. factoring is hard).

Physical assumption: bounded quantum storage [18], secure function evaluation becomes 
possible [19].

??????
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quantum storage.

[20] Wehner et al., PRL 100:220502, 2008
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Application: Security in the Noisy-
Storage Model [20]

[20] Wehner et al., PRL 100:220502, 2008
[21] Kilian, STOC, 1998

[19] König et al., IEEE TIT 58:1962, 2012
[22] B. et al., IEEE ISIT, 2012

What the adversary can do: 
computationally all powerful, 
unlimited classical storage, 
actions are instantaneous, 
BUT noisy (bounded) 
quantum storage.

Basic idea: protocol will have 
have waiting times, in which 
noisy storage must be used!

Implement task ‘weak string erasure’ (sufficient [21]). Using bitwise qc-randomness 
extractors, we can link security to the entanglement fidelity (quantum capacity) of 
the noisy quantum storage (improves [19,22])!



Entropic Uncertainty Relations with 
Quantum Side Information

[14] Wehner and Winter., NJP 12:025009, 2010

Review article [14]. Given a quantum state    and a set of measurements            
these relations usually take the form (where       denotes e.g. the Shannon entropy):

⇢ {K1, . . . ,KD}
H(.)

H(K|D) =
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Entropic Uncertainty Relations with 
Quantum Side Information

[14] Wehner and Winter., NJP 12:025009, 2010
[15] B. et al., NP 6:659, 2010

Review article [14]. Given a quantum state    and a set of measurements            
these relations usually take the form (where       denotes e.g. the Shannon entropy):

⇢ {K1, . . . ,KD}
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[14] Wehner and Winter., NJP 12:025009, 2010
[15] B. et al., NP 6:659, 2010

Review article [14]. Given a quantum state    and a set of measurements            
these relations usually take the form (where       denotes e.g. the Shannon entropy):

⇢ {K1, . . . ,KD}

Idea of [15]: add quantum side information! Start with a bipartite quantum state            
and a set of measurements                   on A:

[16] B./Wehner/Coles, unpublished

H(.)

⇢AE
{K1, . . . ,KD}

here                              , the von Neumann entropy, and its conditional version     H(A)⇢ = �tr[⇢A log ⇢A]

H(A|B)⇢ = H(AB)⇢ �H(B)⇢ (which can get negative for entangled input states!).  

QC-extractors (against quantum side information) give entropic uncertainty 
relations with quantum side information!

Entropic uncertainty relations with quantum side information together with cc-
extractors give qc-extractors (against quantum side information) [16]!
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Relation between qq-, qc-, and cc-extractors?

Bitwise qc-randomness extractor for                  (BB84) encoding? Improve bound 
for                         (six-state) encoding for large n?
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