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o  Given an (unknown) weak source of classical randomness, how to convert it
into uniformly random bits!?

1
+ 61, Pr[Ny; =0] = <+ Jo,

> N=Ny,No,...,N, Ex: Pr[N;=0] = :

1
2
2

Wl =

o Function: f(N = Ny,...,N,) =M Ex: Pr[Ni=0]=2 Pi[N; =1] =
M:f(N1N2N3) :N1—|-N2‘|—N3 mod 2
Pr[M = 0] ~ 0.52

o  Only minimal guarantee about the randomness of the source, high min-entropy:
Hmin(N)P = —log m??X PN(”) - logpguess<N)P

o Not possible to obtain randomness using a deterministic function, invest a

small amount of perfect randomness:
i fD i M = fD (N)

| Seed D
o Lost randomness? Strong extractors: (M, D)are jointly uniform.

o Applications in information theory, cryptography and computational
complexity theory [1,2].

[1] Nisan and Zuckerman, JCSS 52:43, 1996
[2] Vadhan, http://people.seas.harvard.edu/~salil/pseudorandomness/


http://people.seas.harvard.edu/~salil/pseudorandomness/
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Source described by fo |
classical-quantum (cq)-
state: ) id

v lprmED — WM@)PEDHl <€

pNEzgpn!nxnlN@p%. @ @ | I]l: = tx[VXTX]

o  Guarantee about conditional min-entropy of the source: H,,;,(N|E), = —10g pguess(N|E),, -

o Ex: Two-universal hashing / privacy amplification [5]. For all cg-states P~ E with
id
Hmin<N|E>p > k,we have ||prep — 1WM ® peplli <e for M = ok . 2.

Strong (k, €) extractor (against quantum side information), D = O(N).

[3] Konig and Terhal, IEEETIT 54:749,2008 [5] Renner, PhD Thesis, ETHZ, 2005
[4] Gavinsky et al.,, STOC, 2007
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o ldea:Same setup as in the classical case (ho control of the source)! Only
guarantee about the conditional min-entropy [6]:

1 N
[P) v = TN > In)n @ |n)n
F(p,0) = lv/pVolT

o Can get negative for entangled input states, in fact for MES: Hynin(N|E)s = —log V.
[6] Konig et al., IEEE TIT 55:4674, 2009

Hpin(N|E), = —log N max F(®nyn/,(idy ® Ap_n')(pNE))

AE—»N’
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) ) )
—> Mix | | Meas. —>(M, N\M)_> Disc. —>®
N ./ [

el |

@ Ut Q= S (mgl(lmg) fmm]as

Definition: A set of unitaries {U1, - -, Up} defines a strong (k, €) qc-extractor
(against quantum side information) if for any state P~ E with Huin(N|E), > k,
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o |Definition:A set of unitaries {U1, - -

1=1

D
1
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.,Up} defines a strong (k, €) qc-extractor
(against quantum side information) if for any state PN Ewith Huin(N|E), > k,
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M

o  Without side information, this corresponds to €-metric uncertainty relations [7].

o  Fully quantum versions of this: decoupling theorems (quantum coding theory)
[8], quantum state randomization [9], quantum extractors [10]: quantum to
quantum (gq)-randomness extractors!

[7] Fawzi et al., STOC, 201 |
[8] Dupuis, PhD Thesis, McGill, 2009

[9] Hayden et al.,, CMP 250:371, 2004
[10] Ben-Aroya et al,, TOC 6:47,2010
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® Probabilistic construction (random unitaries).

o
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® Converse bounds.

o

o

Output size: M = min{N, N - 2% . ¢*}
Seed size: D = M -log N - ™% «—

Output size: M < N - 2% where 2°|= HS, (N|E), = max Huin(N|E);

(smooth entropies [5,11]).
Seedsize: D >c ! <

® Find explicit constructions!

[5] Renner, PhD Thesis, ETHZ, 2005

[ 1] Tomamichel, PhD Thesis ETHZ, 2012

pEB:(p)

Huge gap! We know that our proof
technique can only yield

D >¢e % - min{N 2751 M/4}[12].

[12] Fawzi, PhD Thesis, McGill, 2012
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o (Almost) unitary two-designs reproduce second moment of random unitaries

8,13]:
: ]JWZMMMNQVQ} D = O(N*)

[8] Dupuis, PhD Thesis, McGill, 2009
[13] Szehr et al., arXiv:1109.4348v |
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o (Almost) unitary two-designs reproduce second moment of random unitaries

[8,13]:

M = min{N, N - 2¥ . €%} D = O(N*)

o Set of unitaries defined by a full set of mutually unbiased bases together with
two-wise independent permutations:

M = min{N, N - 2% . €2} D=N-(N+1)°

o | Bitwise gc-extractors! Let N = 2", M = 2" Set of unitaries defined by a full
set of mutually unbiased bases for each qubit,{ox, 0y, 07}%", together with
two-wise independent permutations:

M =O(N"™831 . ety . min{1,2} D=N-(N-—1).3°8"

[8] Dupuis, PhD Thesis, McGill, 2009
[13] Szehr et al., arXiv:1109.4348v |


http://arxiv.org/abs/1109.4348v1
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Application: Two-Party Cryptography

® Example: secure function evaluation.

f(xy) Should not learn x
Should not learn y

o Not possible to solve without assumptions [|7].
o  Classical assumptions are typically computational assumptions (e.g. factoring is hard).

o  Physical assumption: bounded quantum storage [ 18], secure function evaluation becomes
possible [19].

[17] Lo, PRA 56:1154, 1997 [19] Konig et al., IEEETIT 58:1962,2012
[18] Damgard et al., CRYPTO, 2007
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computationally all powerful,
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actions are instantaneous,
BUT noisy (bounded)
quantum storage.

[20] Wehner et al., PRL 100:220502,2008
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o | Implement task ‘weak string erasure’ (sufficient [21]). Using bitwise gqc-randomness
extractors, we can link security to the entanglement fidelity (quantum capacity) of
the noisy quantum storage (improves [19,22])!

[20] Wehner et al., PRL 100:220502,2008  [19] Konig et al., IEEE TIT 58:1962, 2012
[21] Kilian, STOC, 1998 [22] B. et al., IEEE ISIT, 2012
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o Review article [14]. Given a quantum state p and a set of measurements{Ki,...,Kp}
these relations usually take the form (where H(.) denotes e.g. the Shannon entropy):

H(K|D) = ZH ;D =) > const(K) .

o ldea of [15]:add quantum side information! Start with a bipartite quantum statep 4 i
and a set of measurements {K1,..., Kp} onA:

H(K|ED) = ZH i|[ED =) > const(K) + H(A|E) ,

here H(A), = —tr[palogpa], the von Neumann entropy, and its conditional version

H(A|B), = H(AB), — H(B), (which can get negative for entangled input states!).

o |[QC-extractors (against quantum side information) give entropic uncertainty
relations with quantum side information!

o |Entropic uncertainty relations with quantum side information together with cc-
extractors give qc-extractors (against quantum side information) [16]!

[14] Wehner and Winter.,, NJP 12:025009,2010 [16] B./VWehner/Coles, unpublished
[15] B.etal,, NP 6:659,2010
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o Definition of quantum to classical (qc)-randomness extractors.

o  Probabilistic and explicit constructions as well as converse bounds.

o  Security in the noisy-storage model linked to the quantum capacity.

o Close relation to entropic uncertainty relations with quantum side information.

o Relation between qg-, qc-, and cc-extractors?

o |Seed length: ¢! <D < M -log N -c~* We believe that at least D = polylog(N)
might be possible (cf. cc-extractors against quantum side information [23]).
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Conclusions / Open Problems

o Definition of quantum to classical (qc)-randomness extractors.

o  Probabilistic and explicit constructions as well as converse bounds.

o  Security in the noisy-storage model linked to the quantum capacity.

o Close relation to entropic uncertainty relations with quantum side information.

o Relation between qg-, qc-, and cc-extractors?

o |Seed length: ¢! <D < M -log N -c~* We believe that at least D = polylog(N)
might be possible (cf. cc-extractors against quantum side information [23]).
However, our proof technique can only yield D > ¢ 2 - min{N - 27%~1 M/4} [12].

o Bitwise qc-randomness extractor for{ox, oz }*" (BB84) encoding? Improve bound
for {ox,0y,07}®" (six-state) encoding for large n?

[23] Ve et al.,, arXiv:0912.5514v3
[12] Fawzi, PhD Thesis, McGill, 2012
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