Semidefinite programming hierarchies for quantum adversaries

Mario Berta (IQIM Caltech), Omar Fawzi (ENS Lyon), Volkher Scholz (Ghent University)
(arXiv:1506.08810-Quantum Bilinear Optimisation)

Overview

- Theoretical talk, plus start with non-cryptographic problem
- Classical noisy channel coding versus entanglement-assisted channel coding (quantum assistance)
- Semidefinite programming (sdp) hierarchies for understanding (bounding) the difference
- Cryptography: randomness extractors versus quantum-proof randomness extractors (quantum adversary)
- Conclusion / Outlook

Overview

- Theoretical talk, plus start with non-cryptographic problem
- Classical noisy channel coding versus entanglement-assisted channel coding (quantum assistance)
- Semidefinite programming (sdp) hierarchies for understanding (bounding) the difference
- Cryptography: randomness extractors versus quantum-proof randomness extractors (quantum adversary)
- Conclusion / Outlook

Classical noisy channel coding (I)

- Given noisy channel $W_{X \rightarrow Y}$ mapping X to Y with transition probability:

$$
W_{X \rightarrow Y}(y \mid x) \forall(x, y) \in X \times Y
$$

- The goal is to send k different messages using W while minimising the error probability for decoding:

$$
\begin{array}{rll}
p_{\text {succ }}(W, k):=\underset{(e, d)}{\operatorname{maximize}} & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) & \text { "bilinear optimisation" } \\
\text { subject to } & \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{array}
$$

Classical noisy channel coding (II)

$$
\begin{aligned}
& p_{\text {succ }}(W, k):=\underset{(e, d)}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) \\
& \rightarrow Q \rightarrow \square \\
& \text { subject to } \quad \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

compared to

- Shannon's asymptotic independent and identical distributed (iid) channel capacity:

Definition: $C(W):=\sup \left\{R \mid \forall \delta>0: \lim _{n \rightarrow \infty} p_{\text {succ }}\left(W^{\times n},[R(1-\delta)]^{n}\right)=1\right\}$

Answer: $\quad C(W)=\max _{P_{X}} I(X: Y)$ mutual information

Classical noisy channel coding (II)

$$
\begin{aligned}
& p_{\text {succ }}(W, k):=\underset{(e, d)}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) e(x \mid i) d(i \mid y) \\
& \rightarrow\langle\rightarrow \square \\
& \text { subject to } \quad \sum_{x} e(x \mid i)=1 \quad \forall i \in[k], \quad \sum_{i} d(i \mid y)=1 \quad \forall y \in Y \\
& 0 \leq e(x \mid i) \leq 1 \quad \forall(x, i) \in X \times[k], \quad 0 \leq d(i \mid y) \leq 1 \quad \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

compared to

- Shanmon's asymptotic independent and identical distributed (iid) channeLeapacity:

Entanglement-assisted channel coding (I)

$$
\begin{aligned}
p_{\mathrm{succ}}^{*}(W, k):=\underset{(\mathcal{H}, \psi, E, D)}{\operatorname{maximize}} & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x)\langle\psi| E(x \mid i) \otimes D(i \mid y)|\psi\rangle \text { "quantum bilinear optimisation" } \\
\text { subject to } \quad & \sum_{x} E(x \mid i)=1_{\mathcal{H}} \quad \forall i \in[k], \quad \sum_{i} D(i \mid y)=1_{\mathcal{H}} \quad \forall y \in Y \\
& 0 \leq E(x \mid i) \leq 1_{\mathcal{H}} \forall(x, i) \in X \times[k], \quad 0 \leq D(i \mid y) \leq 1_{\mathcal{H}} \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

Entanglement-assisted channel coding (I)

- Scalar (commutative) vensus matrix (non-commutative) variables:

Entanglement-assisted channel coding (I)

- Scalar (commutative) vensus matrix (non-commutative) variables:

```
maximize
\((e, d)\)
```


- Unknown if $p_{\text {succ }}^{*}(W, k)$ is computable!

Entanglement-assisted channel coding (II)

- Understand the possible separation: $\quad p_{\text {succ }}(W, k)$ versus $p_{\text {succ }}^{*}(W, k)$

Entanglement-assisted channel coding (II)

- Understand the possible separation: $\quad p_{\text {succ }}(W, k)$ versus $p_{\text {succ }}^{*}(W, k)$
- For the asymptotic iid capacity entanglement (quantum) assistance does not help:

$$
C(W)=C^{*}(W) \quad \text { [Bennett et al., PRL (1999)] }
$$

Entanglement-assisted channel coding (II)

- Understand the possible separation: $\quad p_{\text {succ }}(W, k)$ versus $\quad p_{\text {succ }}^{*}(W, k)$
- Fortine asye iid capacity entanglement (quantum) assistan melp:
$C(W)=C^{*}(W)$ [Benneal, ThL(1999)]

Entanglement-assisted channel coding (II)

- Understand the possible separation: $\quad p_{\text {succ }}(W, k)$ versus $\quad p_{\text {succ }}^{*}(W, k)$
- Fortie asy iid capacity entanglement (quantum) assistanctive

$$
\left.\left.C(W)=C^{*}(W) \text { [Bennel } 1999\right)\right]
$$

- In general, there is a separation:

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right) \quad p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833 \quad \text { vs. } \quad p_{\text {succ }}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902
$$

Entanglement-assisted channel coding (II)

- Understand the possible separation: $p_{\text {succ }}(W, k)$ versus $p_{\text {succ }}^{*}(W, k)$
- Fortie asy iid capacity entanglement (quantum) assistanctive

$$
C(W)=C^{*}(W) \text { [Bennetrin (1999)] }
$$

- In general, there is a separation:

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

$$
p_{\mathrm{succ}}(Z, 2)=\frac{5}{6} \approx 0.833 \quad \text { vs. } \quad p_{\mathrm{succ}}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902
$$

[Prevedel et al., PRL (2011)]
\rightarrow this is also optimal with two-dimensional assistance
[Hemenway et al., PRA (2013)] [Williams and Bourdon, arXiv:1109.1029]

Entanglement-assisted channel coding (II)

- Understand the possible separation: $p_{\text {succ }}(W, k)$ versus $\quad p_{\text {succ }}^{*}(W, k)$
- Fortie asy iid capacity entanglement (quantum) assistanctive

$$
C(W)=C^{*}(W) \text { [Bennetrin (1999)] }
$$

- In general, there is a separation:

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right) \quad \rightarrow \text { this is also optimal with two-dimensional assistance } \begin{aligned}
& p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833 \quad \text { vs. } p_{\text {succ }}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902 \\
& \text { [Prevedel et al., PRL (2011)] } \\
& \text { [Hemenway et al., PRA (2013)] } \\
& \text { [Williams and Bourdon, arXiv:1109.1029] }
\end{aligned}
$$

Entanglement-assisted channel coding (II)

- Understand the possible separation: $p_{\text {succ }}(W, k)$ versus $p_{\text {succ }}^{*}(W, k)$
- For the asy iid capacity entanglement (quantum) assistan melp:

$$
\left.\left.C(W)=C^{*}(W) \text { [Bennel } 1999\right)\right]
$$

- In general, there is a separation:

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right) \quad \rightarrow \text { this is also optimal with two-dimensional assistance } \begin{gathered}
p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833 \quad \text { vs. } \quad p_{\text {succ }}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902 \\
\text { [Prevedel et al., PRL (2011)] } \\
\text { [Hemenway et al., PRA (2013)] } \\
\text { [Williams and Bourdon, arXiv:1109.1029] }
\end{gathered}
$$

- However $[0.902,1] \ni p_{\text {succ }}^{*}(Z, 2)=$?
- We give a converging hierarchy of semidefinite programming (sdp) relaxations:

$$
p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k)=\operatorname{sdp}_{\infty}(W, k) \leq \ldots \leq \operatorname{sdp}_{1}(W, k) \quad<- \text { efficiently computable! }
$$

Overview

- Theoretical talk, plus start with non-cryptographic problem
- Classical noisy channel coding versus entanglement-assisted channel coding (quantum assistance)
- Semidefinite programming (sdp) hierarchies for understanding (bounding) the difference
- Cryptography: randomness extractors versus quantum-proof randomness extractors (quantum adversary)

First level semidefinite programming relaxation (I)

- Quantum bilinear program:

$$
\begin{aligned}
p_{\text {succ }}^{*}(W, k):=\underset{(\mathcal{H}, \psi, E, D)}{\operatorname{maximize}} \quad & \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x)\langle\psi| E(x \mid i) \otimes D(i \mid y)|\psi\rangle \\
& \text { subject to } \\
& \sum_{x} E(x \mid i)=1_{\mathcal{H}} \quad \forall i \in[k], \quad \sum_{i} D(i \mid y)=1_{\mathcal{H}} \quad \forall y \in Y \\
& 0 \leq E(x \mid i) \leq 1_{\mathcal{H}} \forall(x, i) \in X \times[k], \quad 0 \leq D(i \mid y) \leq 1_{\mathcal{H}} \forall(i, y) \in[k] \times Y .
\end{aligned}
$$

First level semidefinite programming relaxation (I)

- Quantum bilinear program:

First level semidefinite programming relaxation (I)

- Quantum bilinear program:
idea: relaxation of this bilinear form

motivated by: "NPA hierarchy" (Bell inequalities)
[Lasserre, SIAM (2001)], [Parrilo, Math. Program. (2003)], [Navascues et al., PRL (2007)], [Doherty et al., IEEE CCC (2008)], [Navascues et al., NJP (2008)], [Pironio et al., SIAM (2010)]

First level semidefinite programming relaxation (I)

- Quantum bilinear program:
idea: relaxation of this bilinear form

- First step: see as the part of the upper-right block of the Gram matrix

$$
\begin{aligned}
& \Omega=\sum_{u, v}\langle\psi| X_{u} X_{v}|\psi\rangle|u\rangle\langle v| \quad \text { with } \quad X_{u}=\left\{\begin{array}{cc}
E(x \mid i) & u=(i, x) \\
D(j \mid y) & u=(j, y)
\end{array}\right. \\
& \Omega=\left(\begin{array}{cc}
\langle\psi| E(x \mid i) \cdot E\left(x^{\prime} \mid i^{\prime}\right)|\psi\rangle & \text { for } i= \\
\langle\psi| E(x \mid i) \cdot D(y \mid j)|\psi\rangle \\
\left.\langle\psi| x^{\prime} \mid i^{\prime}\right) \cdot D\left(y^{\prime} \mid j^{\prime}\right)|\psi\rangle & \left.\langle\psi| D(y \mid j) \cdot D\left(y^{\prime} \mid j^{\prime}\right)\right]|\psi\rangle
\end{array}\right)
\end{aligned}
$$

motivated by: "NPA hierarchy" (Bell inequalities)
[Lasserre, SIAM (2001)], [Parrilo, Math. Program. (2003)], [Navascues et al., PRL (2007)], [Doherty et al., IEEE CCC (2008)], [Navascues et al., NJP (2008)], [Pironio et al., SIAM (2010)]

First level semidefinite programming relaxation (I)

- Quantum bilinear program:
idea: relaxation of this bilinear form

- First step: see as the part of the upper-right block of the Gram matrix

$$
\begin{aligned}
& \Omega=\sum_{u, v}\langle\psi| X_{u} X_{v}|\psi\rangle|u\rangle\langle v| \quad \text { with } \quad X_{u}= \begin{cases}E(x \mid i) & u=(i, x) \\
D(j \mid y) & u=(j, y)\end{cases} \\
& \Omega=\left(\begin{array}{c:c}
\langle\psi| E(x \mid i) \cdot E\left(x^{\prime} \mid i^{\prime}\right)|\psi\rangle & \left.\begin{array}{c}
\psi|E(x \mid i) \cdot D(y \mid j)| \psi\rangle \\
\langle\psi| E\left(x^{\prime} \mid i^{\prime}\right) \cdot D\left(y^{\prime} \mid j^{\prime}\right)|\psi\rangle \\
\left.\langle\psi| D(y \mid j) \cdot D\left(y^{\prime} \mid j^{\prime}\right)\right]|\psi\rangle
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

- Original constraints can be formulated as positivity conditions on Ω : $\operatorname{sdp}_{1}(W, k)$
motivated by: "NPA hierarchy" (Bell inequalities)
[Lasserre, SIAM (2001)], [Parrilo, Math. Program. (2003)], [Navascues et al., PRL (2007)], [Doherty et al., IEEE CCC (2008)], [Navascues et al., NJP (2008)], [Pironio et al., SIAM (2010)]

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\left.\begin{array}{rl}
\operatorname{sdp}_{1}(W, k)= & \underset{\Omega}{\operatorname{maximize}}
\end{array} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)}\right)
$$

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\begin{aligned}
& \operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)} \\
& \text { subject to } \quad \Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad \text { with } \emptyset \text { the empty symbol } \\
& \Omega_{u, v} \geq 0 \quad \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} \quad \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} \quad \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .
\end{aligned}
$$

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\begin{aligned}
& \operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)} \\
& \text { subject to } \quad \Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad \text { with } \emptyset \text { the empty symbol } \\
& \Omega_{u, v} \geq 0 \quad \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} \quad \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} \quad \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .
\end{aligned}
$$

- Going back to our example: $p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833$

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

(known before, with twodimensional assistance)

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\begin{aligned}
& \operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)} \\
& \text { subject to } \quad \Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad \text { with } \emptyset \text { the empty symbol } \\
& \Omega_{u, v} \geq 0 \quad \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} \quad \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} \quad \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .
\end{aligned}
$$

- Going back to our example: $p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833$

$$
Z=\left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 0 \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 0 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

(known before, with two-

$$
p_{\text {succ }}^{*}(Z, 2) \geq \frac{2+2^{-1 / 2}}{3} \approx 0.902
$$ dimensional assistance)

- Relaxation: $p_{\text {succ }}^{*}(Z, 2) \leq \operatorname{sdp}_{1}(Z, 2) \approx 0.908=\frac{1}{2}+\frac{1}{\sqrt{6}}$
- Four-dimensional assistance: $p_{\text {succ }}^{*}(Z, 2) \geq \frac{1}{2}+\frac{1}{\sqrt{6}}$

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\begin{aligned}
& \operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \quad \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)} \\
& \text { subject to } \Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad \text { with } \emptyset \text { the empty symbol } \\
& \text { new condition } \rightarrow \Omega_{u, v} \geq 0 \quad \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} \quad \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} \quad \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .
\end{aligned}
$$

- Going back to opr example: $\quad p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833$
$Z=\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 1 / 3 \\ 1 / 3 & 0 & 1 / 3 & 0 \\ 0 & 1 / 3 & 0 & 1 / 3 \\ 1 / 3 & 0 & 0 & 1 / 3 \\ 0 & 1 / 3 & 1 / 3 & 0\end{array}\right)$
(NPA hierarchy nd non-
signailing bounds are one)
(known before, with two-
dimensional assistance)
- Relaxation: $p_{\text {succ }}^{*}(Z, 2) \leq \operatorname{sdp}_{1}(Z, 2) \approx 0.908=\frac{1}{2}+\frac{1}{\sqrt{6}}$
- Four-dimensional assistance: $p_{\text {succ }}^{*}(Z, 2) \geq \frac{1}{2}+\frac{1}{\sqrt{6}}$

First level semidefinite programming relaxation (II)

- First level relaxation: $p_{\text {succ }}(W, k) \leq p_{\text {succ }}^{*}(W, k) \leq \operatorname{sdp}_{1}(W, k)$

$$
\begin{aligned}
& \operatorname{sdp}_{1}(W, k)=\underset{\Omega}{\operatorname{maximize}} \quad \frac{1}{k} \sum_{x, y, i} W_{X \rightarrow Y}(y \mid x) \Omega_{(i, x),(i, y)} \\
& \text { subject to } \Omega \in \operatorname{Pos}(1+k|X|+k|Y|), \quad \Omega_{\emptyset, \emptyset}=1 \quad \text { with } \emptyset \text { the empty symbol } \\
& \text { new condition } \longrightarrow \Omega_{u, v} \geq 0 \quad \forall u, v \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{x} \Omega_{w,(i, x)}=\Omega_{w, \emptyset} \quad \forall i \in[k], w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} \\
& \sum_{i} \Omega_{w,(i, y)}=\Omega_{w, \emptyset} \quad \forall y \in Y, w \in X \times[k] \cup Y \times[k] \cup\{\emptyset\} .
\end{aligned}
$$

- Going back to opr example: $\quad p_{\text {succ }}(Z, 2)=\frac{5}{6} \approx 0.833$
$Z=\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 0 & 0 \\ 0 & 0 & 1 / 3 & 1 / 3 \\ 1 / 3 & 0 & 1 / 3 & 0 \\ 0 & 1 / 3 & 0 & 1 / 3 \\ 1 / 3 & 0 & 0 & 1 / 3 \\ 0 & 1 / 3 & 1 / 3 & 0\end{array}\right)$
(NPA hierarchy nd non-
signaliling bounds are one)
(known before, with twodimensional assistance)
- Relaxation: $p_{\text {succ }}^{*}(Z, 2) \leq \operatorname{sdp}_{1}(Z, 2) \approx 0.908=\frac{1}{2}+\frac{1}{\sqrt{6}}$
- Four-dimensional assistance: $p_{\text {succ }}^{*}(Z, 2) \geq \frac{1}{2}+\frac{1}{\sqrt{6}}$
$\rightarrow>$ further work [Barman and Fawzi., arXiv: 1508.04095]

Overview

- Theoretical talk, plus start with non-cryptographic problem
- Classical noisy channel coding versus entanglement-assisted channel coding (quantum assistance)
- Semidefinite programming (sdp) hierarchies for understanding (bounding) the difference
- Cryptography: randomness extractors versus quantum-proof randomness extractors (quantum adversary)
- Conclusion / Outlook

Quantum Cryptography (I)

- Privacy amplification: weak source of randomness $X \in\{0,1\}^{n}$

uniform random bits $Z \in\{0,1\}^{m}$ (up to $\epsilon \geq 0$)
- Example: two-universal hashing

Quantum Cryptography (I)

- Privacy amplification: weak source of randomness $X \in\{0,1\}^{n}$

uniform random bits $Z \in\{0,1\}^{m}$

$$
\text { (up to } \epsilon \geq 0 \text {) }
$$

- Example: two-universal hashing

Quantum Cryptography (I)

- Privacy amplification: weak source of randomness $X \in\{0,1\}^{n}$

uniform random bits $Z \in\{0,1\}^{m}$

$$
\text { (up to } \epsilon \geq 0 \text {) }
$$

- Example: two-universal hashing
- What happens for quantum adversaries? weak source of randomness relative to E

uniform random bits relative to E (up to $\epsilon \geq 0$)

Quantum Cryptography (I)

- Privacy amplification: weak source of randomness $X \in\{0,1\}^{n}$

uniform random bits $Z \in\{0,1\}^{m}$

$$
\text { (up to } \epsilon \geq 0 \text {) }
$$

- What happens for quantum adversaries? weak source of randomness relative to E

- Example: two-universal hashing
- Motivation: quantum key distribution, two-party cryptography, "quantum-safe / quantum-proof / post-quantum"

Quantum Cryptography (I)

- Privacy amplification: weak source of randomness $X \in\{0,1\}^{n}$

uniform random bits $Z \in\{0,1\}^{m}$

$$
\text { (up to } \epsilon \geq 0 \text {) }
$$

- What happens for quantum adversaries? weak source of randomness relative to E

uniform random bits relative to E (up to $\epsilon \geq 0$)
- Example: two-universal hashing
- Motivation: quantum key distribution, two-party cryptography, "quantum-safe / quantum-proof / post-quantum"
- Classical versus quantum error (the ϵ):

Quantum Cryptography (II)

- For randomness extractors: classical versus quantum adversaries

$$
C(\mathrm{Ext}, k) \text { versus } Q(\mathrm{Ext}, k) \quad \text { computable? }
$$

```
classical bilinear optimisation versus quantum bilinear optimisation
    scalar variables versus matrix variables
```


Quantum Cryptography (II)

- For randomness extractors: classical versus quantum adversaries

$$
C(\mathrm{Ext}, k) \text { versus } Q(\mathrm{Ext}, k) \quad \text { computable? }
$$

```
classical bilinear optimisation versus quantum bilinear optimisation
    scalar variables versus matrix variables
```

- Converging hierarchy of semidefinite programming relaxations:

$$
C(\operatorname{Ext}, k) \leq Q(\operatorname{Ext}, k)=\operatorname{sdp}_{\infty}(\operatorname{Ext}, k) \leq \ldots \leq \operatorname{sdp}_{1}(\text { Ext }, k)<\text { efficiently computable! }
$$

\rightarrow upper bounding the power of quantum adversaries

Quantum Cryptography (II)

- For randomness extractors: classical versus quantum adversaries

$$
C(\mathrm{Ext}, k) \text { versus } Q(\mathrm{Ext}, k) \quad \text { computable? }
$$

```
classical bilinear optimisation versus quantum bilinear optimisation
    scalar variables versus matrix variables
```

- Converging hierarchy of semidefinite programming relaxations:

$$
C(\operatorname{Ext}, k) \leq Q(\operatorname{Ext}, k)=\operatorname{sdp}_{\infty}(\operatorname{Ext}, k) \leq \ldots \leq \operatorname{sdp}_{1}(\text { Ext }, k)<\text { efficiently computable! }
$$

\rightarrow upper bounding the power of quantum adversaries

- See our paper for results: arXiv: 1506.08810-Quantum Bilinear Optimisation

Overview

- Theoretical talk, plus start with non-cryptographic problem
- Classical noisy channel coding versus entanglement-assisted channel coding (quantum assistance)
- Semidefinite programming (sdp) hierarchies for understanding (bounding) the difference
- Cryptography: randomness extractors versus quantum-proof randomness extractors (quantum adversary)
- Conclusion / Outlook

Conclusion / Outlook

- Understand quantum assistance (noisy channel coding) and quantum adversaries (randomness extractors) using optimisation methods
- Converging hierarchy of semidefinite programming relaxations:

$$
C \leq Q=\operatorname{sdp}_{\infty} \leq \ldots \leq \operatorname{sdp}_{1}
$$

- Apply proof method more generically, to whole cryptographic protocols?

Conclusion / Outlook

- Understand quantum assistance (noisy channel coding) and quantum adversaries (randomness extractors) using optimisation methods
- Converging hierarchy of semidefinite programming relaxations:

$$
C \leq Q=\operatorname{sdp}_{\infty} \leq \ldots \leq \operatorname{sdp}_{1}
$$

- Apply proof method more generically, to whole cryptographic protocols?
- Two-prover games (Bell inequalities): we get tighter hierarchy (than previous work)
\longrightarrow first level also in independent work [Sikora and Varvitsiotis, arXiv: 1506.07297]
- Optimisations over the completely positive semidefinite cone: we get the first hierarchy (quantum graph parameters)
[Laurent and Piovesan, arXiv:1312.6643]

