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• Any theory of information processing depends on 
and underlying physical theory

• Goal: understand similarities and differences

• Classical physics: bits

• (Non-relativistic) quantum physics: qubits

• Other examples: non-local boxes, quantum field 
theory, quantum gravity (?)
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compute a given function with bipartite input?

-> no classical/quantum super polynomial separation is proven (!)
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Motivation: Bits vs. Qubits II
• Bell inequalities (multi prover games): for a given 

game, what is the optimal winning probability 
(averaged over all possible questions)?
-> unbounded classical/quantum separation is known

• Cryptography: key distribution, two-party 
cryptography, etc.

Alice Bob

Ref.

Alice Bob

Eve

x 2 X

y 2 Yquestions

answers

Ref.

a 2 A b 2 B

-> but also: quantum adversaries, post-quantum 
cryptography!

-> strong classical/quantum separation is known
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• Goal: transform only partly random classical source N into (almost perfectly) 
uniformly random source M (possibly over shorter alphabet)

Alice 
N

Alice 
MExt

(2m = M ✓ N = 2n)

Randomness Extraction I

• Condition: contains some randomness as measured by

pguess(N)

P

= max

x

p
x

 1/k



• Goal: transform only partly random classical source N into (almost perfectly) 
uniformly random source M (possibly over shorter alphabet)
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N

Alice 
MExt

(2m = M ✓ N = 2n)

• Problem: cannot be achieved in a deterministic way, if we require it to work for 
all sources satisfying the upper bound on the guessing probability

• Solution: can be achieved if the use of a catalyst is allowed, additional 
uniformly random source over alphabet           (called the seed)

Randomness Extraction I

• Condition: contains some randomness as measured by

pguess(N)

P

= max

x

p
x
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Randomness Extraction I

• Definition: A       -extractor is a deterministic mapping                          such 
that for all distributions      with                         we have that                          is   -
close in variational distance to              ,
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P (Ext(i, P ) = y) =
X

x2N

p
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· �
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This objects 
actually exist 
(with “good” 
parameters)!
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Randomness Extraction II
• Goal: transform only partly random classical source N into (almost perfectly) 

uniformly random and private source M (possibly over shorter alphabet)

• Correlations: if E is classical then the extractor still works but what happens 
for E quantum?

• Motivation: quantum cryptography, post-quantum cryptography, information 
theory —> compare classical to quantum memory

• Setup: input is classical-quantum state with lower bound on the adversary’s 
guessing probability of the secret N (given all her knowledge)
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Randomness Extraction II
• Goal: transform only partly random classical source N into (almost perfectly) 

uniformly random and private source M (possibly over shorter alphabet)

• Definition: A quantum-proof       -extractor is a deterministic mapping(k, ✏)
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Randomness Extraction II
• Goal: transform only partly random classical source N into (almost perfectly) 

uniformly random and private source M (possibly over shorter alphabet)

• Definition: A quantum-proof       -extractor is a deterministic mapping(k, ✏)

Ext : D ⇥N ! M ⇢NE
pguess(N |E)⇢  1/k
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,
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New 
condition!
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Randomness Extraction III

• Known: some extractor constructions are quantum-proof, some are not —> 
there is a classical - quantum gap (only understood very poorly)

• Goal: understand this gap better, find (matching) upper and lower bounds on 
the size of the gap

C(Ext, k) vs. Q(Ext, k)

• Motivation: quantum cryptography, post-quantum cryptography, information 
theory —> compare classical to quantum memory

• Our work: we developed mathematical framework to study this question 
based on operator space theory (cf. Bell inequalities)

• Results: derive all known result with unified proof strategy (using semi-
definite program relaxations), plus give new bounds on the classical - 
quantum gap

• Extra: relate the question about the violation of Bell inequalities to the 
question about quantum-proof extractors
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Overview

• Classical extractor property is expressed as norm of a linear mapping 
between normed linear spaces

• These normed spaces can be quantised, giving rise to operator spaces

• The property quantum-proof extractor can be formulated in terms of a 
completely bounded norm (norms between operator spaces)

C(Ext, k) vs. Q(Ext, k)
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• Consider the norm:
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—> input constraint captured for distributions with kPk\  1

(remember:                                                                             )

k · k\ = max {k · k1, kk · k1}

• Extractor characterised by linear mapping                                  :
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with bounded norm constraint

C(Ext, k) = k�[Ext]k\!1 = max {k�[Ext](z)k1 : kxk\  1k  ✏
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Operator Spaces

• Analyse bounded vs. completely bounded norm: in general, but also for 
specific extractor constructions!

Q(Ext, k) = k�[Ext]kcb,\!1  ✏

C(Ext, k) vs. Q(Ext, k) , k�[Ext]k\!1 vs. k�[Ext]kcb,\!1

• Linear normed space W together with a sequence of norms on W ⌦Mq, q 2 N
satisfying some consistency conditions

classical quantum

L : W ! V

kLkcb = sup
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�
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• Randomness extraction against classical vs. quantum adversaries:
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• We phrase the problem in terms of operator space theory:

C(Ext, k) vs. Q(Ext, k) , k�[Ext]k\!1 vs. k�[Ext]kcb,\!1

• Connection to Bell inequalities, extension to theory of pseudorandomness, etc.

Main question 
remains largely 

open!


