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¥ Any theory of information processing depends on
and underlying physical theory

¥ Classical physics: bits
¥ (Non-relativistic) guantum physics: qubits

¥ Other examples: non-local boxes, quantum Peld
theory, quantum gravity (?)

¥ Goal: understand similarities and differences
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¥ Computational complexity : ShorOs prime factorisation algorithm GroverOs
search algorithm, simulation of quantum systems etc.

-> no classical/quantum super polynomial separation is proven (!)

¥ Communication complexity : how much communication is needed to
compute a given function with bipartite input?

-> exponential classical/quantum separation is known (!)
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¥ Bell inequalities (multiprover games): for a given
x € X questons Y €Y

game, what is the optimal winning probability
(averaged over all possible questions)?

-> unbounded classical/quantum separation is known

a e A answers be B

\ Ref. /

¥ Cryptography : key distribution, two-party
cryptography, etc.

-> strong classical/quantum separation is known
,» Eve e

-> put also: quantum adversaries, post-quantum . >----o
T Alice AN Bob
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¥ Goal: transform only partly random classical source N into (almost perfectly)
uniformly random source M (possibly over shorter alphabet)

Alice Alice
N M
2"=M"! N=2")

¥ Condition : contains some randomness as measured by

Pguess(N )p = m)-';lx Py ! 1k

¥ Problem : cannot be achieved in a deterministic way, if we require it to work for
all sources satisfying the upper bound on the guessing probability

¥ Solution : can be achieved if the use of a catalyst is allowed, additional
uniformly random source over alphabet D = 2¢(called the seed)
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¥ Goal: transform only partly random classical source N into (almost perfectly)
uniformly random source M (possibly over shorter alphabet)

This objects

Alice # Alice actually exist
N M (with OgoodO

parameters)!
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¥ Goal: transform only partly random classical source N into (almost perfectly)
uniformly random and private source M (possibly over shorter alphabet)

¥ Correlations : if E is classical then the extractor still works but what happens
for E quantum?

¥ Motivation : quantum cryptography, post-quantum cryptography, information
theory N> compare classical to quantum memory

¥ Setup: input is classical-quantum state with lower bound on the adversaryOs
guessing probability of the secret N (given all her knowledge )

INe = ¥ XI"X|N # 1§ Pguess(NIE) = max  tr[AEpE]! 1k
x! N =T N
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¥ Goal: transform only partly random classical source N into (almost perfectly)
uniformly random and private source M (possibly over shorter alphabet)

Eve Alice Alice Eve
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condition!

¥ DePnition : A quantum-proof (k,!)-extractor Is a deterministic mapping
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¥ Motivation : guantum cryptography, post-quantum cryptography, information
theory N> compare classical to quantum memory

¥ Known : some extractor constructions are guantum-proof, some are not N>
there is a classical - quantum gap (only understood very poorly)

¥ Goal: understand this gap better, bnd (matching) upper and lower bounds on
the size of the gap

¥ Our work : we developed mathematical framework to study this question
based on operator space theory (cf. Bell inequalities)

¥ Results : derive all known result with uniPed proof strategy (using semi-
debnite program relaxations), plus give new bounds on the classical -
guantum gap

¥ Extra: relate the question about the violation of Bell inequalities to the
guestion about quantum-proof extractors
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Overview

C(Ext,k) vs. Q(Ext,Kk)

Classical extractor property is expressed as norm of a linear mapping
between normed linear spaces

These normed spaces can be gquantised , giving rise to operator spaces

The property quantum-proof extractor can be formulated in terms of a
completely bounded norm (norms between operator spaces)
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¥ Considerthe norm: || - ||y = max{|| - ||, k] - [+ }

N> input constraint captured for distributions with  ||P|} <1

1
' C(Ext, k) = — Y 1Ext(i,P)" Uy!, #
(remember: C(Ext, k) L max D%; xt(i,P)" Uun!, # €)

¥ Extractor characterised by linear mapping A[Ext] : RY — RPM:

1 !
A[EXt] (ex) — 5 'Ext( i,X ): y I
1D

yeM

ei ey

1
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with bounded norm constraint
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¥ Linear normed space W together with a sequence of norms onW! M, q" N

satisfying some consistency conditions
classical guantum

¥ A mapping L : W — Vbetween operator spaces W and V has completely
n norm : : :
pounded norm:(c0) Llleo = sup” 1L @ idar llwe arye v o,

q’

¥ There exist operator space extensions such that:

¥ Analyse bounded vs. completely bounded norm: in general, but also for
specibc extractor constructions!

C(Ext,k) wvs. Q(Ext,k) ! " AlExt]". ; vs. "A[Ext|"_, . ;

9
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Randomness extraction against classical vs. guantum adversaries:

Eve _ ____ Alice Alice _ v, o Eve
E N M E
C(Ext,k) vs. Q(Ext,k) Main question
remains largely
. open!
We phrase the problem in terms of operator space theory:
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