Quantum adversaries via operator space theory

Mario Berta (IQIM Caltech), Omar Fawzi (ENS Lyon), Volkher Scholz (ETH Zurich) - partly based on arXiv:1409.3563

Caltech \equiv EDEZürich

Outline

- Motivation
- Randomness extraction against quantum adversaries
- Results - mathematical framework based on operator space theory
- Summary and outlook

Outline

- Motivation
- Randomness extraction against quantum adversaries
- Results - mathematical framework based on operator space theory
- Summary and outlook

Motivation: Quantum Information

- Any theory of information processing depends on and underlying physical theory

Motivation: Quantum Information

- Any theory of information processing depends on and underlying physical theory
- Classical physics: bits

Motivation: Quantum Information

- Any theory of information processing depends on and underlying physical theory
- Classical physics: bits
- (Non-relativistic) quantum physics: qubits

Motivation: Quantum Information

- Any theory of information processing depends on and underlying physical theory
- Classical physics: bits
- (Non-relativistic) quantum physics: qubits
- Other examples: non-local boxes, quantum field theory, quantum gravity (?)

Motivation: Quantum Information

- Any theory of information processing depends on and underlying physical theory
- Classical physics: bits
- (Non-relativistic) quantum physics: qubits
- Other examples: non-local boxes, quantum field theory, quantum gravity (?)
- Goal: understand similarities and differences

Motivation: Bits vs. Qubits I

- Computational complexity: Shor's prime factorisation algorithm, Grover's search algorithm, simulation of quantum systems etc.

Motivation: Bits vs. Qubits I

- Computational complexity: Shor's prime factorisation algorithm, Grover's search algorithm, simulation of quantum systems etc.
-> no classical/quantum super polynomial separation is proven (!)

Motivation: Bits vs. Qubits I

- Computational complexity: Shor's prime factorisation algorithm, Grover's search algorithm, simulation of quantum systems etc.
-> no classical/quantum super polynomial separation is proven (!)
- Communication complexity: how much communication is needed to compute a given function with bipartite input?

Motivation: Bits vs. Qubits I

- Computational complexity: Shor's prime factorisation algorithm, Grover's search algorithm, simulation of quantum systems etc.
-> no classical/quantum super polynomial separation is proven (!)
- Communication complexity: how much communication is needed to compute a given function with bipartite input?
-> exponential classical/quantum separation is known (!)

Motivation: Bits vs. Qubits II

- Bell inequalities (multi prover games): for a given game, what is the optimal winning probability (averaged over all possible questions)?
-> unbounded classical/quantum separation is known

Motivation: Bits vs. Qubits II

- Bell inequalities (multi prover games): for a given game, what is the optimal winning probability (averaged over all possible questions)?
-> unbounded classical/quantum separation is known

Motivation: Bits vs. Qubits II

- Bell inequalities (multi prover games): for a given game, what is the optimal winning probability (averaged over all possible questions)?
-> unbounded classical/quantum separation is known
- Cryptography: key distribution, two-party cryptography, etc.
-> strong classical/quantum separation is known

Motivation: Bits vs. Qubits II

- Bell inequalities (multi prover games): for a given game, what is the optimal winning probability (averaged over all possible questions)?
-> unbounded classical/quantum separation is known
- Cryptography: key distribution, two-party cryptography, etc.
-> strong classical/quantum separation is known

Motivation: Bits vs. Qubits II

- Bell inequalities (multi prover games): for a given game, what is the optimal winning probability (averaged over all possible questions)?
-> unbounded classical/quantum separation is known
- Cryptography: key distribution, two-party cryptography, etc.
-> strong classical/quantum separation is known
-> but also: quantum adversaries, post-quantum cryptography!

Outline

- Motivation
- Randomness extraction against quantum adversaries
- Results - mathematical framework based on operator space theory
- Summary and outlook

Randomness Extraction I

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random source M (possibly over shorter alphabet)

- Condition: contains some randomness as measured by

$$
p_{\text {guess }}(N)_{P}=\max _{x} p_{x} \leq 1 / k
$$

Randomness Extraction I

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random source M (possibly over shorter alphabet)

- Condition: contains some randomness as measured by

$$
p_{\text {guess }}(N)_{P}=\max _{x} p_{x} \leq 1 / k
$$

- Problem: cannot be achieved in a deterministic way, if we require it to work for all sources satisfying the upper bound on the guessing probability
- Solution: can be achieved if the use of a catalyst is allowed, additional uniformly random source over alphabet $D=2^{d}$ (called the seed)

Randomness Extraction I

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random source M (possibly over shorter alphabet)

- Definition: A (k, ϵ)-extractor is a deterministic mapping Ext : $D \times N \rightarrow M$ such that for all distributions P_{N} with $p_{\text {guess }}(N)_{P} \leq 1 / k$ we have that $\left(U_{D}, \operatorname{Ext}\left(P_{N}, U_{D}\right)\right)$ is ϵ close in variational distance to $\left(U_{D}, U_{M}\right)$,

$$
C(\text { Ext }, k)=\max _{p_{\text {guess }}(N)_{P} \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\operatorname{Ext}(i, P)-U_{M}\right\|_{1} \leq \epsilon
$$

where the output distribution is given by $\mathbb{P}(\operatorname{Ext}(i, P)=y)=\sum_{x \in N} p_{x} \cdot \delta_{\operatorname{Ext}(i, x)=y}$

Randomness Extraction

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random source M (possibly over shorter alphabet)

Alice
N

- Definition: A (k, ϵ)-extractor is a deterministic mapping Ext : $D \times N \rightarrow M$ such that for all distributions P_{N} with $p_{\text {guess }}(N)_{P} \leq 1 / k$ we have that $\left(U_{D}, \operatorname{Ext}\left(P_{N}, U_{D}\right)\right)$ is ϵ close in variational distance to $\left(U_{D}, U_{M}\right)$,

$$
C(\text { Ext }, k)=\max _{p_{\text {guess }}(N)_{P} \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\operatorname{Ext}(i, P)-U_{M}\right\|_{1} \leq \epsilon
$$

where the output distribution is given by $\mathbb{P}(\operatorname{Ext}(i, P)=y)=\sum_{x \in N} p_{x} \cdot \delta_{\operatorname{Ext}(i, x)=y}$

Randomness Extraction II

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random and private source M (possibly over shorter alphabet)

Randomness Extraction II

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random and private source M (possibly over shorter alphabet)

- Correlations: if E is classical then the extractor still works but what happens for E quantum?
- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory

Randomness Extraction II

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random and private source M (possibly over shorter alphabet)

- Correlations: if E is classical then the extractor still works but what happens for E quantum?
- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory
- Setup: input is classical-quantum state with lower bound on the adversary's guessing probability of the secret N (given all her knowledge)

$$
\rho_{N E}=\sum_{x \in N}|x\rangle\left\langle\left. x\right|_{N} \otimes \rho_{E}^{x} \quad p_{\text {guess }}(N \mid E)_{\rho}=\max _{\Lambda=\left\{\Lambda^{x}\right\}} \sum_{x \in N} \operatorname{tr}\left[\Lambda_{E}^{x} \rho_{E}^{x}\right] \leq 1 / k\right.
$$

Randomness Extraction II

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random and private source M (possibly over shorter alphabet)

- Definition: A quantum-proof (k, ϵ)-extractor is a deterministic mapping Ext : $D \times N \rightarrow M$ such that for all classical-quantum states $\rho_{N E}$ with $p_{\text {guess }}(N \mid E)_{\rho} \leq 1 / k$,

$$
\begin{gathered}
Q(\operatorname{Ext}, k)=\max _{p_{\text {guess }}(N \mid E)_{\rho} \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\left(\operatorname{Ext} \otimes \operatorname{id}_{E}\right)\left(i, \rho_{N E}\right)-U_{M} \otimes \rho_{E}\right\|_{1} \leq \epsilon \\
\left(\operatorname{Ext} \otimes \operatorname{id}_{E}\right)=\sum_{\substack{x \in N \\
y \in M}} \delta_{\operatorname{Ext}(i, x)=y}|y\rangle\left\langle\left. y\right|_{M} \otimes \rho_{E}^{x}\right.
\end{gathered}
$$

Randomness Extraction II

- Goal: transform only partly random classical source N into (almost perfectly) uniformly random and private source M (possibly over shorter alphabet)

- Definition: A quantum-proof (k, ϵ)-extractor is a deterministic mapping Ext : $D \times N \rightarrow M$ such that for all classical-quantum states $\rho_{N E}$ with $p_{\text {guess }}(N \mid E)_{\rho} \leq 1 / k$,

$$
\begin{gathered}
Q(\operatorname{Ext}, k)=\max _{p_{\text {guess }}(N \mid E)_{\rho} \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\left(\operatorname{Ext} \otimes \operatorname{id}_{E}\right)\left(i, \rho_{N E}\right)-U_{M} \otimes \rho_{E}\right\|_{1} \leq \epsilon \\
\left(\operatorname{Ext} \otimes \operatorname{id}_{E}\right)=\sum_{\substack{x \in N \\
y \in M}} \delta_{\operatorname{Ext}(i, x)=y}|y\rangle\left\langle\left. y\right|_{M} \otimes \rho_{E}^{x}\right.
\end{gathered}
$$

Randomness Extraction III

$C($ Ext,$k)$ vs. $\quad Q($ Ext,$k)$

- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory

Randomness Extraction III

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k)
$$

- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory
- Known: some extractor constructions are quantum-proof, some are not \longrightarrow there is a classical - quantum gap (only understood very poorly)
- Goal: understand this gap better, find (matching) upper and lower bounds on the size of the gap

Randomness Extraction III

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k)
$$

- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory
- Known: some extractor constructions are quantum-proof, some are not $->$ there is a classical - quantum gap (only understood very poorly)
- Goal: understand this gap better, find (matching) upper and lower bounds on the size of the gap
- Our work: we developed mathematical framework to study this question based on operator space theory (cf. Bell inequalities)

Randomness Extraction III

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k)
$$

- Motivation: quantum cryptography, post-quantum cryptography, information theory \longrightarrow compare classical to quantum memory
- Known: some extractor constructions are quantum-proof, some are not \longrightarrow there is a classical - quantum gap (only understood very poorly)
- Goal: understand this gap better, find (matching) upper and lower bounds on the size of the gap
- Our work: we developed mathematical framework to study this question based on operator space theory (cf. Bell inequalities)
- Results: derive all known result with unified proof strategy (using semidefinite program relaxations), plus give new bounds on the classical quantum gap
- Extra: relate the question about the violation of Bell inequalities to the question about quantum-proof extractors

Outline

- Motivation
- Randomness extraction against quantum adversaries
- Results - mathematical framework based on operator space theory
- Summary and outlook

Overview

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k)
$$

- Classical extractor property is expressed as norm of a linear mapping between normed linear spaces
- These normed spaces can be quantised, giving rise to operator spaces
- The property quantum-proof extractor can be formulated in terms of a completely bounded norm (norms between operator spaces)

Linear Normed Spaces

- Consider the norm: $\|\cdot\|_{n}=\max \left\{\|\cdot\|_{1}, k\|\cdot\|_{\infty}\right\}$
\longrightarrow input constraint captured for distributions with $\|P\|_{n} \leq 1$

$$
\left(\text { remember: } C(\operatorname{Ext}, k)=\max _{p_{\mathrm{s} \operatorname{ueses}(N) P} \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\operatorname{Ext}(i, P)-U_{M}\right\|_{1} \leq \epsilon\right)
$$

Linear Normed Spaces

- Consider the norm: $\|\cdot\|_{n}=\max \left\{\|\cdot\|_{1}, k\|\cdot\|_{\infty}\right\}$
\rightarrow input constraint captured for distributions with $\|P\|_{\cap} \leq 1$

$$
\text { (remember: } \left.C(\operatorname{Ext}, k)=\max _{p_{\text {guess }}(N) P \leq 1 / k} \frac{1}{D} \sum_{i \in D}\left\|\operatorname{Ext}(i, P)-U_{M}\right\|_{1} \leq \epsilon\right)
$$

- Extractor characterised by linear mapping $\Delta[\mathrm{Ext}]: \mathbb{R}^{N} \rightarrow \mathbb{R}^{D M}$:

$$
\Delta[\operatorname{Ext}]\left(e_{x}\right)=\frac{1}{D} \sum_{\substack{i \in D \\ y \in M}}\left(\delta_{\operatorname{Ext}(i, x)=y}-\frac{1}{M}\right) e_{i} \otimes e_{y}
$$

with bounded norm constraint

$$
C(\mathrm{Ext}, k)=\|\Delta[\mathrm{Ext}]\|_{\cap \rightarrow 1}=\max \left\{\|\Delta[\operatorname{Ext}](z)\|_{1}:\|x\|_{\cap} \leq 1 \| \leq \epsilon\right.
$$

Operator Spaces

- Linear normed space W together with a sequence of norms on $W \otimes M_{q}, q \in \mathbb{N}$ satisfying some consistency conditions

- Linear normed space W together with a sequence of norms on $W \otimes M_{q}, q \in \mathbb{N}$ satisfying some consistency conditions

- A mapping $L: W \rightarrow V$ between operator spaces W and V has completely bounded norm (cb):

$$
\|L\|_{\mathrm{cb}}=\sup _{q \in \mathbb{N}}\left\{\left\|L \otimes \operatorname{id}_{M_{q}}\right\|_{W \otimes M_{q} \rightarrow V \otimes M_{q}}\right\}
$$

- Linear normed space W together with a sequence of norms on $W \otimes M_{q}, q \in \mathbb{N}$ satisfying some consistency conditions

- A mapping $L: W \rightarrow V$ between operator spaces W and V has completely bounded norm (cb):

$$
\|L\|_{\mathrm{cb}}=\sup _{q \in \mathbb{N}}\left\{\left\|L \otimes \operatorname{id}_{M_{q}}\right\|_{W \otimes M_{q} \rightarrow V \otimes M_{q}}\right\}
$$

- There exist operator space extensions such that:

$$
Q(\mathrm{Ext}, k)=\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1} \leq \epsilon
$$

- Linear normed space W together with a sequence of norms on $W \otimes M_{q}, q \in \mathbb{N}$ satisfying some consistency conditions

- A mapping $L: W \rightarrow V$ between operator spaces W and V has completely bounded norm (cb):

$$
\|L\|_{\mathrm{cb}}=\sup _{q \in \mathbb{N}}\left\{\left\|L \otimes \mathrm{id}_{M_{q}}\right\|_{W \otimes M_{q} \rightarrow V \otimes M_{q}}\right\}
$$

- There exist operator space extensions such that:

$$
Q(\mathrm{Ext}, k)=\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1} \leq \epsilon
$$

- Analyse bounded vs. completely bounded norm: in general, but also for specific extractor constructions!

$$
C(\operatorname{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k) \Leftrightarrow\|\Delta[\mathrm{Ext}]\|_{\cap \rightarrow 1} \quad \text { vs. } \quad\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1}
$$

Outline

- Motivation
- Randomness extraction against quantum adversaries
- Results - mathematical framework based on operator space theory
- Summary and outlook

Summary and Outlook

- Analyse differences (similarities) between classical and quantum information
- Randomness extraction against classical vs. quantum adversaries:

Summary and Outlook

- Analyse differences (similarities) between classical and quantum information
- Randomness extraction against classical vs. quantum adversaries:

- We phrase the problem in terms of operator space theory:

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k) \Leftrightarrow\|\Delta[\mathrm{Ext}]\|_{\cap \rightarrow 1} \quad \text { vs. } \quad\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1}
$$

Summary and Outlook

- Analyse differences (similarities) between classical and quantum information
- Randomness extraction against classical vs. quantum adversaries:

- We phrase the problem in terms of operator space theory:

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k) \Leftrightarrow\|\Delta[\mathrm{Ext}]\|_{\cap \rightarrow 1} \quad \text { vs. } \quad\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1}
$$

- We derive all known result with a unified proof strategy (using semi-definite program relaxations), plus give new bounds on the classical - quantum gap
- Connection to Bell inequalities, extension to theory of pseudorandomness, etc.

Summary and Outlook

- Analyse differences (similarities) between classical and quantum information
- Randomness extraction against classical vs. quantum adversaries:

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k)
$$

- We phrase the problem in terms of operator space theory:

$$
C(\mathrm{Ext}, k) \quad \text { vs. } \quad Q(\mathrm{Ext}, k) \Leftrightarrow\|\Delta[\mathrm{Ext}]\|_{\cap \rightarrow 1} \quad \text { vs. } \quad\|\Delta[\mathrm{Ext}]\|_{\mathrm{cb}, \cap \rightarrow 1}
$$

- We derive all known result with a unified proof strategy (using semi-definite program relaxations), plus give new bounds on the classical - quantum gap
- Connection to Bell inequalities, extension to theory of pseudorandomness, etc.

