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Motivation: Quantum Information

¥ Any theory of information processing depends on 
and underlying physical theory

¥ Goal : understand similarities and differences

¥ Classical physics: bits

¥ (Non-relativistic) quantum physics: qubits

¥ Other examples: non-local boxes, quantum Þeld 
theory, quantum gravity (?)
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¥ Computational complexity : ShorÕs prime factorisation algorithm, GroverÕs 
search algorithm, simulation of quantum systems etc.

¥ Communication complexity : how much communication is needed to 
compute a given function with bipartite input?

-> no classical/quantum super polynomial separation is proven (!)

-> exponential classical/quantum separation is known (!)
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Motivation: Bits vs. Qubits II

¥ Bell inequalities  (multi prover games): for a given 
game, what is the optimal winning probability 
(averaged over all possible questions)?

-> unbounded classical/quantum separation is known

¥ Cryptography : key distribution, two-party 
cryptography, etc.

Alice Bob

Ref.

Alice Bob

Eve

x 2 X

y 2 Yquestions

answers

Ref.

a 2 A b 2 B

-> but also: quantum adversaries, post-quantum 
cryptography!

-> strong classical/quantum separation is known
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¥ Problem : cannot be achieved in a deterministic way, if we require it to work for 
all sources satisfying the upper bound on the guessing probability

¥ Solution : can be achieved if the use of a catalyst is allowed, additional 
uniformly random source over alphabet           (called the seed)

Randomness Extraction I

¥ Condition : contains some randomness as measured by

pguess(N )P = max
x

px ! 1/k

D = 2d
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P(Ext(i, P ) = y) =
!
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p
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actually exist 
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Randomness Extraction II
¥ Goal : transform only partly random classical source N into (almost perfectly) 

uniformly random and private  source M (possibly over shorter alphabet)

¥ Correlations : if E is classical then the extractor still works but what happens 
for E quantum?

¥ Motivation : quantum cryptography, post-quantum cryptography, information 
theory Ñ> compare classical to quantum memory

¥ Setup : input is classical-quantum state with lower bound on the adversaryÕs 
guessing probability of the secret N (given all her knowledge )

! NE =
X

x ! N

|x!" x|N # ! x
E pguess(N |E )! = max

! = { ! x}

!

x ! N

tr [⇤

x
E ⇢x

E ] ! 1/k
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Randomness Extraction II
¥ Goal : transform only partly random classical source N into (almost perfectly) 

uniformly random and private  source M (possibly over shorter alphabet)

¥ DeÞnition : A quantum-proof       -extractor  is a deterministic mapping(k, ! )

Ext : D ! N " M ⇢NE
pguess(N |E)! ! 1/k

such that for all classical-quantum states         with      
,

(Ext ⌦ idE ) =
X

x ! N
y! M

! Ext( i,x )= y |yihy|M ⌦ " x
E

Q(Ext , k) = max
pguess(N |E )⇢1/k
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Randomness Extraction II
¥ Goal : transform only partly random classical source N into (almost perfectly) 

uniformly random and private  source M (possibly over shorter alphabet)

¥ DeÞnition : A quantum-proof       -extractor  is a deterministic mapping(k, ! )

Ext : D ! N " M ⇢NE
pguess(N |E)! ! 1/k

such that for all classical-quantum states         with      
,

(Ext ⌦ idE ) =
X

x ! N
y! M

! Ext( i,x )= y |yihy|M ⌦ " x
E

Q(Ext , k) = max
pguess(N |E )⇢1/k

1
D

X

i2D

! (Ext " idE )( i, ! NE ) # UM " ! E ! 1 $ "

New 
condition!
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Randomness Extraction III

¥ Known : some extractor constructions are quantum-proof, some are not Ñ> 
there is a classical - quantum gap  (only understood very poorly)

¥ Goal : understand this gap better, Þnd (matching) upper and lower bounds on 
the size of the gap

C(Ext, k) vs. Q(Ext, k)

¥ Motivation : quantum cryptography, post-quantum cryptography, information 
theory Ñ> compare classical to quantum memory

¥ Our work : we developed mathematical framework to study this question 
based on operator space theory  (cf. Bell inequalities)

¥ Results : derive all known result with uniÞed proof strategy (using semi-
deÞnite program relaxations), plus give new bounds on the classical - 
quantum gap

¥ Extra : relate the question about the violation of Bell inequalities to the 
question about quantum-proof extractors
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Overview

¥ Classical extractor property is expressed as norm  of a linear mapping 
between normed linear spaces

¥ These normed spaces can be quantised , giving rise to operator spaces

¥ The property quantum-proof  extractor can be formulated in terms of a 
completely bounded norm  (norms between operator spaces)

C(Ext, k) vs. Q(Ext, k)
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Linear Normed Spaces
¥ Consider the norm :

C(Ext, k) = max

pguess (N )P 1/k

1

D

X

i2D

! Ext(i, P ) " UM ! 1 # ✏

Ñ> input constraint captured for distributions with kPk!  1

(remember:                                                                             )

k · k! = max {k · k1, kk · k" }

¥ Extractor characterised by linear mapping                                   :
�[Ext] : RN ! RDM

�[Ext](ex ) =
1

D

!

i2D
y2M

"
! Ext( i,x )= y !

1

M

#
ei " ey

with bounded norm  constraint

C(Ext, k) = k! [Ext]k!" 1 = max { k! [Ext](z)k1 : kxk!  1k  ✏
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Operator Spaces

¥ Analyse bounded vs. completely bounded norm: in general, but also for 
speciÞc extractor constructions!

Q(Ext, k) = k! [Ext]kcb,!" 1  !

C(Ext, k) vs. Q(Ext, k) ! " �[Ext]" !" 1 vs. "�[Ext]" cb,!" 1

¥ Linear normed space W together with a sequence of norms  on W ! M q, q " N
satisfying some consistency conditions

classical quantum

L : W ! V

kLkcb = sup
q! N

!
kL⌦ idMq ||W " Mq# V " Mq

"
¥ A mapping                   between operator spaces W and V has completely 

bounded norm  (cb):

¥ There exist operator space extensions such that:
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¥ We phrase the problem in terms of operator space theory:

C(Ext, k) vs. Q(Ext, k) ! " �[Ext]" !" 1 vs. "�[Ext]" cb,!" 1

¥ Connection to Bell inequalities, extension to theory of pseudorandomness, etc.

Main question 
remains largely 

open!


