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®  Our main result is measurement simulation on general inputs:
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Cavs = Cent = Max[(X : R), r= max H(X), —max (X : R),
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® Hence, we determined the information gain of quantum measurements:

P

I(M) = maxI(X : R).,

® Result between classical [6] and quantum [7,8] reverse Shannon theorem

® Extension: rate region for non-feedback vs. feedback measurement simulation

c(r) = max {mS‘X”X )y mgax H(X ) = r}

® Extension: quantum instrument simulation

® Extension: explicit protocols

[6] Bennett et al., IEEE Trans. on Inf.Th. (2002) [7] Bennett et al., arXiv:0912.5537v5
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