Identifying the Information Gain of a Quantum Measurement

Mario Berta, Joseph M. Renes, Mark M.Wilde - full version IEEE Transactions on Information Theory, vol. 60, no. I2, pages 7987-8006, 2014

Question: How much information (about the input) is gained by performing a given quantum measurement?

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Setup (a)

Setup (a)

$$
\begin{aligned}
& \mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
\end{aligned}
$$

Setup (a)

\bullet Source $\rho^{\prime} \rightarrow$ Meas. $\mathcal{M} \rightarrow \rho_{X}=\sum_{x}|x\rangle\langle\left. x\right|_{X} \cdot \overbrace{\operatorname{tr}[\underbrace{\left(M_{A}^{x}\right)^{\dagger} \rho_{A} M_{A}^{x}}_{\rho_{A}^{x}}]}^{p_{x}}$

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired $=$ information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired = information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired = information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

But: $M_{A}^{x} \neq|x\rangle$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired $=$ information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

$$
\text { But: } \quad M_{A}^{x} \neq|x\rangle
$$

- Intuitive reasoning [I]: reduction of entropy? $I(\mathcal{M}) \stackrel{?}{=} H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}}$ $H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired = information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

$$
\text { But: } M_{A}^{x} \neq|x\rangle
$$

- Intuitive reasoning [I]: reduction of entropy? $I(\mathcal{M}) \stackrel{?}{=} H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}}$
- Non-negativity [2]: $H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}} \geq 0$

$$
H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

Setup (a)

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired = information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

$$
\text { But: } M_{A}^{x} \neq|x\rangle
$$

- Intuitive reasoning [I]: reduction of entropy? $I(\mathcal{M}) \stackrel{?}{=} H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}}$
- Non-negativity [2]: $H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}} \geq 0 \quad H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]$
- Information and disturbance in quantum measurements [3]:

$$
\begin{aligned}
& I(\mathcal{M}) \stackrel{?}{=} I(X: R)_{\omega}\left(=H(X)_{\omega}+H(R)_{\omega}-H(X R)_{\omega}\right) \geq 0 \\
& \quad \omega_{X R}=\sum_{x}|x\rangle\langle\left. x\right|_{X} \otimes \operatorname{tr}_{A}[\left(M_{A}^{x} \otimes 1_{R}\right)^{\dagger} \underbrace{\rho_{A R}}_{\text {pure }}\left(M_{A}^{x} \otimes 1_{R}\right)]
\end{aligned}
$$

Setup (a)

- Source $\xrightarrow{\rho_{A}}$ Meas. $\mathcal{M} \longrightarrow \rho_{X}=\sum_{x}|x\rangle\langle\left. x\right|_{X} \cdot \overbrace{\operatorname{tr}[\underbrace{\left.\left(M_{A}^{x}\right)^{\dagger} \rho_{A} M_{A}^{x}\right]}_{\rho_{A}^{x}}}^{p_{x}}$

$$
\mathcal{M}=\left\{M_{A}^{x}\right\} \quad \sum_{x}\left(M_{A}^{x}\right)^{\dagger} M_{A}^{x}=1_{A}
$$

- First guess: amount of data acquired = information gain? $I(\mathcal{M}) \stackrel{?}{=} \log (\# x)$

Or for asymptotic independent and identically distributed (iid) setup:

$$
I(\mathcal{M}) \stackrel{?}{=} H(X)_{\rho}\left(=-\sum_{x} p_{x} \log p_{x}\right)
$$

$$
\text { But: } M_{A}^{x} \neq|x\rangle
$$

- Intuitive reasoning [I]: reduction of entropy? $I(\mathcal{M}) \stackrel{?}{=} H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}}$
- Non-negativity [2]: $H(A)_{\rho}-\sum_{x} p_{x} \cdot H(A)_{\rho^{x}} \geq 0 \quad H(A)_{\rho}=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]$
- Information and disturbance in quantum measurements [3]:

$$
\begin{aligned}
& I(\mathcal{M}) \stackrel{?}{=} I(X: R)_{\omega}\left(=H(X)_{\omega}+H(R)_{\omega}-H(X R)_{\omega}\right) \geq 0 \\
& \omega_{X R}=\sum_{x}|x\rangle\langle\left. x\right|_{X} \otimes \operatorname{tr}_{A}[\left(M_{A}^{x} \otimes 1_{R}\right)^{\dagger} \underbrace{\rho_{A R}}_{\text {pure }}\left(M_{A}^{x} \otimes 1_{R}\right)]
\end{aligned}
$$

- Precise information-theoretic meaning in [4]!

Setup (b)

- Only output data that is correlated to the input should be counted as information gain! Information-theoretic idea of simulating the measurement [4]:

Setup (b)

- Only output data that is correlated to the input should be counted as information gain! Information-theoretic idea of simulating the measurement [4]:

Ref.

Setup (b)

- Only output data that is correlated to the input should be counted as information gain! Information-theoretic idea of simulating the measurement [4]:

Setup (b)

- Only output data that is correlated to the input should be counted as information gain! Information-theoretic idea of simulating the measurement [4]:

Setup (b)

- Only output data that is correlated to the input should be counted as information gain! Information-theoretic idea of simulating the measurement [4]:

Ref.

- Main result in [4]:

$$
\begin{aligned}
c & :=\lim _{n \rightarrow \infty} \frac{c_{n}}{n}=I(X: R)_{\omega} \\
r & :=\lim _{n \rightarrow \infty} \frac{r_{n}}{n}=H(X \mid R)_{\omega}\left(=H(X R)_{\omega}-H(R)_{\omega}\right)
\end{aligned}
$$

Setup (c)

- An easy example for [4]:

$$
\rho_{A}=\frac{1}{2} 1_{A} \quad \mathcal{M}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}
$$

Setup (c)

- An easy example for [4]:

$$
\rho_{A}=\frac{1}{2} 1_{A} \quad \mathcal{M}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}
$$

Ref.

Setup (c)

- An easy example for [4]:

$$
\rho_{A}=\frac{1}{2} 1_{A} \quad \mathcal{M}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}
$$

Ref.

$\rho_{A R}=|\rho\rangle\left\langle\left.\rho\right|_{A R} \mid \rho\right\rangle_{A R}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{R}+|1\rangle_{A} \otimes|1\rangle_{R}\right)=\frac{1}{\sqrt{2}}\left(|+\rangle_{A} \otimes|+\rangle_{R}+|-\rangle_{A} \otimes|-\rangle_{R}\right)$

Setup (c)

- An easy example for [4]:

$$
\rho_{A}=\frac{1}{2} 1_{A} \quad \mathcal{M}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}
$$

Ref.

$\rho_{A R}=|\rho\rangle\left\langle\left.\rho\right|_{A R} \mid \rho\right\rangle_{A R}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{R}+|1\rangle_{A} \otimes|1\rangle_{R}\right)=\frac{1}{\sqrt{2}}\left(|+\rangle_{A} \otimes|+\rangle_{R}+|-\rangle_{A} \otimes|-\rangle_{R}\right)$
$\omega_{X R}=\frac{1}{4}\left(|0\rangle\left\langle\left. 0\right|_{X} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{R}+\mid 1\right\rangle\left\langle\left. 1\right|_{X} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{R}+\mid 2\right\rangle\left\langle\left. 2\right|_{X} \otimes \mid+\right\rangle\left\langle+\left.\right|_{R}+\mid 3\right\rangle\left\langle\left. 3\right|_{X} \otimes \mid-\right\rangle\left\langle-\left.\right|_{R}\right)\right.$

$$
H(X)_{\rho}=2 \quad I(X: R)_{\omega}=1 \quad H(X \mid R)_{\omega}=1
$$

Setup (C)

- An easy example for [4]:

$$
\rho_{A}=\frac{1}{2} 1_{A} \quad \mathcal{M}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|, \frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}
$$

Ref.

$$
\begin{aligned}
& \rho_{A R}=|\rho\rangle\left\langle\left.\rho\right|_{A R} \mid \rho\right\rangle_{A R}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{R}+|1\rangle_{A} \otimes|1\rangle_{R}\right)=\frac{1}{\sqrt{2}}\left(|+\rangle_{A} \otimes|+\rangle_{R}+|-\rangle_{A} \otimes|-\rangle_{R}\right) \\
& \omega_{X R}=\frac{1}{4}\left(|0\rangle\left\langle\left. 0\right|_{X} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{R}+\mid 1\right\rangle\left\langle\left. 1\right|_{X} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{R}+\mid 2\right\rangle\left\langle\left. 2\right|_{X} \otimes \mid+\right\rangle\left\langle+\left.\right|_{R}+\mid 3\right\rangle\left\langle\left. 3\right|_{X} \otimes \mid-\right\rangle\left\langle-\left.\right|_{R}\right)\right.
\end{aligned}
$$

$$
H(X)_{\rho}=2 \quad I(X: R)_{\omega}=1 \quad H(X \mid R)_{\omega}=1
$$

- Apply according to shared randomness: $\quad \sigma_{X}=\left\{\frac{1}{2}|0\rangle\langle 0|, \frac{1}{2}|1\rangle\langle 1|\right\} \sigma_{Z}=\left\{\frac{1}{2}|+\rangle\langle+|, \frac{1}{2}|-\rangle\langle-|\right\}$

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)

- Main result - answer
- Proof ideas
- Conclusions

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).
- We generalize (ii) to arbitrarily varying sources and even entangled sources (measurement simulation on general inputs):

$$
\rho_{A}^{\otimes n} \text { vs. } \rho_{A}^{1} \otimes \rho_{A}^{2} \otimes \cdots \otimes \rho_{A}^{n} \text { vs. } \rho_{A^{n}}^{n}
$$

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).
- We generalize (ii) to arbitrarily varying sources and even entangled sources (measurement simulation on general inputs):

$$
\rho_{A}^{\otimes n} \text { vs. } \rho_{A}^{1} \otimes \rho_{A}^{2} \otimes \cdots \otimes \rho_{A}^{n} \text { vs. } \rho_{A^{n}}^{n}
$$

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).
- We generalize (ii) to arbitrarily varying sources and even entangled sources (measurement simulation on general inputs):

$$
\rho_{A}^{\otimes n} \text { vs. } \rho_{A}^{1} \otimes \rho_{A}^{2} \otimes \cdots \otimes \rho_{A}^{n} \text { vs. } \rho_{A^{n}}^{n}
$$

$$
c_{\mathrm{avs}}=c_{\mathrm{ent}}=\max _{\rho} I(X: R)_{\omega} \quad r=\max _{\rho} H(X)_{\omega}-\max _{\rho} I(X: R)_{\omega}
$$

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).
- We generalize (ii) to arbitrarily varying sources and even entangled sources (measurement simulation on general inputs):

$$
\rho_{A}^{\otimes n} \text { vs. } \rho_{A}^{1} \otimes \rho_{A}^{2} \otimes \cdots \otimes \rho_{A}^{n} \text { vs. } \rho_{A^{n}}^{n}
$$

$$
c_{\mathrm{avs}}=c_{\mathrm{ent}}=\max _{\rho} I(X: R)_{\omega} \quad r=\max _{\rho} H(X)_{\omega}-\max _{\rho} I(X: R)_{\omega}
$$

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

Main result

- Weaknesses of [4]: (i) only asymptotic iid (ii) only for known fixed input (protocol depends on input).
- We generalize (ii) to arbitrarily varying sources and even entangled sources (measurement simulation on general inputs):

$$
\rho_{A}^{\otimes n} \text { vs. } \rho_{A}^{1} \otimes \rho_{A}^{2} \otimes \cdots \otimes \rho_{A}^{n} \text { vs. } \rho_{A^{n}}^{n}
$$

$$
c_{\mathrm{avs}}=c_{\mathrm{ent}}=\max _{\rho} I(X: R)_{\omega} \quad r=\max _{\rho} H(X)_{\omega}-\max _{\rho} I(X: R)_{\omega}
$$

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

- By proving this, we also generalize (i) to the one-shot case: $c^{\epsilon} \approx I_{\max }^{\epsilon}(X: R)_{\omega}$

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Setup - making the question precise (information-theoretically)
- Main result - answer
- Proof ideas
- Conclusions

Proof Ideas

$c_{n}^{\epsilon}:$ classical communication cost
$r_{n}^{\epsilon}:$ shared randomness cost

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \mathrm{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \mathrm{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$
- Now: $\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \epsilon \quad\|\mathcal{M}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\| \|_{1} \leq 1}\left\|\left(\mathcal{M} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1}$

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$
- Now: $\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \epsilon \quad\|\mathcal{M}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\|\sigma\|_{1} \leq 1}\left\|\left(\mathcal{M} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1}$
- Post-selection technique for quantum channels [5]:

$$
\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \operatorname{poly}(n) \cdot\left\|\left(\left(\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right) \otimes \operatorname{id}_{R^{\prime}}\right)\left(\zeta_{A R^{\prime}}^{n}\right)\right\|_{1}
$$

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$
- Now: $\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \epsilon \quad\|\mathcal{M}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\|\sigma\|_{1} \leq 1}\left\|\left(\mathcal{M} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1}$
- Post-selection technique for quantum channels [5]:

$$
\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \operatorname{poly}(n) \cdot\left\|\left(\left(\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right) \otimes \operatorname{id}_{R^{\prime}}\right)\left(\zeta_{A R^{\prime}}^{n}\right)\right\|_{1}
$$

But: $\zeta_{A R^{\prime}}^{n}$ purification of a special de Finetti state (a state which consists of n iid copies of a state on a single subsystem), i.e., no iid structure and [4] not applicable!

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$
- Now: $\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \epsilon \quad\|\mathcal{M}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\|\sigma\|_{1} \leq 1}\left\|\left(\mathcal{M} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1}$
- Post-selection technique for quantum channels [5]:

$$
\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \operatorname{poly}(n) \cdot\left\|\left(\left(\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right) \otimes \operatorname{id}_{R^{\prime}}\right)\left(\zeta_{A R^{\prime}}^{n}\right)\right\|_{1}
$$

But: $\zeta_{A R^{\prime}}^{n}$ purification of a special de Finetti state (a state which consists of n iid copies of a state on a single subsystem), i.e., no iid structure and [4] not applicable!

- New one-shot protocol based on quantum-proof randomness extractors:

R	R
\uparrow	*
X	$\operatorname{Ext}(X)$

Proof Ideas

- In [4] for fixed iid input $\rho_{A R}:\left\|\left(\mathcal{M}_{A}^{\otimes n} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)-\left(S_{n}^{\epsilon} \otimes \operatorname{id}_{R}^{\otimes n}\right)\left(\rho_{A R}^{\otimes n}\right)\right\|_{1} \leq \epsilon$
- Now: $\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \epsilon \quad\|\mathcal{M}\|_{\diamond}=\sup _{k \in \mathbb{N}} \sup _{\|\sigma\|_{1} \leq 1}\left\|\left(\mathcal{M} \otimes \operatorname{id}_{k}\right)(\sigma)\right\|_{1}$
- Post-selection technique for quantum channels [5]:

$$
\left\|\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right\|_{\diamond} \leq \operatorname{poly}(n) \cdot\left\|\left(\left(\mathcal{M}_{A}^{\otimes n}-S_{n}^{\epsilon}\right) \otimes \operatorname{id}_{R^{\prime}}\right)\left(\zeta_{A R^{\prime}}^{n}\right)\right\|_{1}
$$

But: $\zeta_{A R^{\prime}}^{n}$ purification of a special de Finetti state (a state which consists of n iid copies of a state on a single subsystem), i.e., no iid structure and [4] not applicable!

- New one-shot protocol based on quantum-proof randomness extractors:

R	R
	*
X	$\operatorname{Ext}(X)$

Idea: extract all randomness from measurement data and only send the rest from Alice to Bob to simulate the measurement

Question: How much information (about the input) is gained by performing a given quantum measurement?

Outline

- Main result - answer
- Proof ideas
- Conclusions

Conclusions

- Our main result is measurement simulation on general inputs:

$$
c_{\mathrm{avs}}=c_{\mathrm{ent}}=\max _{\rho} I(X: R)_{\omega} \quad r=\max _{\rho} H(X)_{\omega}-\max _{\rho} I(X: R)_{\omega}
$$

Conclusions

- Our main result is measurement simulation on general inputs:

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

Conclusions

- Our main result is measurement simulation on general inputs:

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

- Result between classical [6] and quantum [7,8] reverse Shannon theorem

Conclusions

- Our main result is measurement simulation on general inputs:

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

- Result between classical [6] and quantum [7,8] reverse Shannon theorem
- Extension: rate region for non-feedback vs. feedback measurement simulation

$$
c(r)=\max \left\{\max _{\rho} I(X: R)_{\omega}, \max _{\rho} H(X)_{\omega}-r\right\}
$$

Conclusions

- Our main result is measurement simulation on general inputs:

- Hence, we determined the information gain of quantum measurements:

$$
I(\mathcal{M})=\max _{\rho} I(X: R)_{\omega}
$$

- Result between classical [6] and quantum [7,8] reverse Shannon theorem
- Extension: rate region for non-feedback vs. feedback measurement simulation

$$
c(r)=\max \left\{\max _{\rho} I(X: R)_{\omega}, \max _{\rho} H(X)_{\omega}-r\right\}
$$

- Extension: quantum instrument simulation
- Extension: explicit protocols

Thanks!

