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Abstract—Recently a new quantum generalization of the Rényi
divergence and the corresponding conditional Rényi entropies
was proposed. Here we report on a surprising relation between
conditional Rényi entropies based on this new generalization and
conditional Rényi entropies based on the quantum relative Rényi
entropy that was used in previous literature. This generalizes the
well-known duality relation H(A|B)+H(A|C) = 0 for tripartite
pure states to Rényi entropies of two different kinds.

As a direct application, we prove a collection of inequalities
that relate different conditional Rényi entropies.

I. INTRODUCTION

Recently, there has been renewed interest in finding suit-
able quantum generalizations of Rényi’s [33] entropies and
divergences. This is due to the fact that Rényi entropies and
divergences have a wide range of applications in classical
information theory and cryptography, see, e.g. [11].

We will review some of the recent progress here, but refer
the reader to [29] for a more in-depth discussion. For our
purposes, a quantum system is modeled by a finite dimensional
Hilbert space. We denote by P the set of positive semi-definite
operators on that Hilbert space, and by S the subset of density
operators with unit trace.

The following natural quantum generalization of the Rényi
divergence has been widely used and has found operational
significance, for example, as a cut-off rate in quantum hypoth-
esis testing [26] (see also [30], [31]). It is usually referred to as
quantum Rényi relative entropy and for all α ∈ (0, 1)∪ (1,∞)
defined as

Dα(ρ‖σ) :=
1

α− 1
log tr

{
ρασ1−α} (1)

for arbitrary ρ ∈ S, σ ∈ P that satisfy ρ� σ.1

While this definition has proven useful in many applications,
it has a major drawback in that it does not satisfy the data-
processing inequality (DPI) for α > 2. The DPI states that the
quantum Rényi relative entropy is contractive under applica-
tion of a quantum channel, i.e., Dα

(
E [ρ]

∥∥E [σ]
)
≤ Dα(ρ‖σ)

for any completely positive trace-preserving map E . Intuitively,
this property is very desirable since we want to think of the

1The notation ρ � σ means that σ dominates ρ, i.e. the kernel of σ lies
inside the kernel of ρ.

divergence as a measure of how well ρ can be distinguished
from σ, and this can only get more difficult after a channel is
applied.

Recently, an alternative quantum generalization of the
Rényi divergence has been investigated [28], [29], [38] (see
also [35]). It is referred to as quantum Rényi divergence,2 and
defined as

D̃α(ρ‖σ) :=
1

α− 1
log tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
(2)

under the same constraints. The quantum Rényi divergence has
found operational significance in the converse part of quantum
hypothesis testing [27]. As such, it satisfies the DPI for all α ≥
1
2 as was shown by Frank and Lieb [13] and independently
by Beigi [6] for α > 1. (See also earlier work [28], [29]
where a different proof is given for α ∈ (1, 2] and [27] for an
alternative, more operational proof.) Furthermore, the quantum
Rényi divergence has already proven an indispensable tool, for
example in the study of strong converse capacities of quantum
channels [15], [38]

The definitions, (1) and (2), are in general different but
coincide when ρ and σ commute. For α ∈ {0, 1,∞}, we
define Dα(ρ‖σ) and D̃α(ρ‖σ) as the corresponding limit. In
the limit α → 1 both expressions converge to the quantum
relative entropy [28], [29], [38], namely

D1(ρ‖σ) = D̃1(ρ‖σ) = D(ρ‖σ) := tr
{
ρ(log ρ− log σ)

}
.

It has been observed [12], [38] that the relation

Dα(ρ‖σ) ≥ D̃α(ρ‖σ) (3)

follows from the Araki-Lieb-Thirring trace inequality [1],
[24]. Furthermore, α 7→ Dα(ρ‖σ) and α 7→ D̃α(ρ‖σ) are
monotonically increasing functions. For the latter quantity, this
was shown in [29] and independently in [6].

Finally, very recently Audenaert and Datta [4] defined a
more general two parameter family of α-z-relative Rényi
entropies of the form

Dα,z(ρ‖σ) :=
1

α− 1
log tr

{(
ρ
α
z σ

1−α
z

)z}
,

2It is also called sandwiched Rényi relative entropy in [38].



and explored some of its properties. We clearly have Dα ≡
Dα,1 and D̃α ≡ Dα,α.

II. QUANTUM CONDITIONAL RÉNYI ENTROPIES

We will in the following consider disjoint quantum systems,
denoted by capital letters A,B and C. The sets P(A) and
S(A) take on the expected meaning.

The conditional von Neumann entropy can be conveniently
expressed in terms of the quantum relative entropy as follows.
For a bipartite state ρAB ∈ S(AB), we define

H(A|B)ρ := H(ρAB)−H(ρB) (4)
= −D(ρAB‖1A ⊗ ρB) (5)
= sup
σB∈S(B)

−D(ρAB‖1A ⊗ σB), (6)

where H(ρ) := − tr{ρ log ρ} is the usual von Neumann
entropy. The last equality can be verified using the relation
D(ρAB‖1A⊗σB) = D(ρAB‖1A⊗ρB)+D(ρB‖σB) together
with the fact that D(·‖·) is positive definite.

In the case of Rényi entropies, it is not immediate which
expression — (4), (5) or (6) — should be used to define the
conditional Rényi entropies. It has been found in the study
of the classical special case (see, e.g. [22] for an overview)
that generalizations based on (4) have severe limitations, for
example they cannot be expected to satisfy a DPI. On the other
hand, definitions based on the underlying divergence, as in (5)
or (6), have proven to be very fruitful and lead to quantities
with operational significance. Together with the two proposed
quantum generalizations of the Rényi divergence in (1) and (2),
this leads to a total of four different candidates for conditional
Rényi entropies. For α ≥ 0 and ρAB ∈ S(AB), we define

H↓α(A|B)ρ := −Dα(ρAB‖1A ⊗ ρB), (7)

H↑α(A|B)ρ := sup
σB∈S(B)

−Dα(ρAB‖1A ⊗ σB), (8)

H̃↓α(A|B)ρ := −D̃α(ρAB‖1A ⊗ ρB), and (9)

H̃↑α(A|B)ρ := sup
σB∈S(B)

−D̃α(ρAB‖1A ⊗ σB). (10)

The fully quantum entropy H↓α has first been studied in [36].
For the classical and classical-quantum special case this quan-
tity gives a generalization of the leftover hashing lemma [7]
for the modified mutual information to Rényi entropies with
α 6= 2 [17], [18].

The classical version of H↑α was introduced by Arimoto
for an evaluation of the guessing probability [2]. We note
that he used another but equivalent expression for H↑α that
we later explain in Lemma 1. Then, Gallager used H↑α (again
in the form of Lemma 1) to upper bound the decoding error
probability of a random coding scheme for data compression
with side-information [14] (see also [39]). The classical and
classical-quantum special cases of H↑α were, for example,
also investigated in [18], [20] and realize another type of
a generalization of the leftover hashing lemma for the L1-
distinguishability in the study of randomness extraction to
Rényi entropies with α 6= 2.

It follows immediately from the definition and the corre-
sponding property of Dα that these two entropies satisfy a
data-processing inequality. Namely for any quantum operation
EB→B′ with τAB′ = EB→B′ [ρAB ] and any α ∈ [0, 2], we have

H↓α(A|B)ρ ≤ H↓α(A|B′)τ and H↑α(A|B)ρ ≤ H↑α(A|B′)τ .

The conditional entropy H̃↑α was investigated in [29] and H̃↓α
is first considered in this paper. Since the relative entropies D̃α

and Dα are identical for commuting operators, we note that
H̃↑α = H↑α as well as H̃↓α = H↓α for classical distributions.
Again, both quantum generalizations satisfy the above data-
processing inequality but this time for α ≥ 1

2 .
Furthermore, it is easy to verify that all entropies considered

are invariant under applications of local isometries on either
the A or B systems. Also note that the optimization over σB
can always be restricted to σB � ρB for α > 1. Moreover,
inheriting these properties from the corresponding divergences,
all entropies are monotonically decreasing functions of α.

Note that we use up and down arrows to express
the trivial observation that H↑α(A|B)ρ ≥ H↓α(A|B)ρ and
H̃↑α(A|B)ρ ≥ H̃↓α(A|B)ρ by definition. More interestingly, (3)
gives us the additional relations H̃↑α(A|B)ρ ≥ H↑α(A|B)ρ and
H̃↓α(A|B)ρ ≥ H↓α(A|B)ρ. These relations are summarized in
Figure 1 and will be of value later.

For α = 1, all definitions coincide with the usual conditional
von Neumann entropy, Eq. (5). For α = ∞, two quantum
generalizations of the conditional min-entropy emerge, which
both have been studied by Renner [32]. Namely,3

H̃↓∞(A|B)ρ = sup
{
λ ∈ R

∣∣ ρAB ≤ 2−λ1A ⊗ ρB
}
, (11)

H̃↑∞(A|B)ρ = sup
{
λ ∈ R

∣∣ ρAB ≤ 2−λ1A ⊗ σB ,
σB ∈ S(B)

}
. (12)

For α = 2, we find a quantum generalization of the conditional
collision entropy as introduced by Renner [32]:

H̃↓2 (A|B)ρ = − log tr

{(
ρAB

(
1A ⊗ ρ

− 1
2

B

))2
}
. (13)

For α = 1
2 , we find the quantum conditional max-entropy first

studied by König et al. [23],4

H̃↑1/2(A|B)ρ = sup
σB∈S(B)

logF (ρAB , 1A ⊗ σB) , (14)

where F (·, ·) denotes Uhlmann’s fidelity. For α = 0, we find a
quantum conditional generalization of the Hartley entropy [16]
that was initially considered by Renner [32],

H↑0 (A|B)ρ = sup
σB∈S(B)

log tr{ΠρAB 1A ⊗ σB} , (15)

where Πρ denotes the projector onto the support of ρ.

3The notation Hmin(A|B)ρ|ρ ≡ H̃↓
∞(A|B)ρ and Hmin(A|B)ρ ≡

H̃↑
∞(A|B)ρ is widely used. However, we prefer our notation as it makes

our exposition in this manuscript clearer.
4The notation Hmax(A|B)ρ ≡ H̃↑

1/2
(A|B)ρ is often used.
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Fig. 1. Overview of the different conditional entropies used in this paper.
Arrows indicate that one entropy is larger or equal to the other for all states
ρAB ∈ S(AB) and all α ≥ 0.

III. DUALITY RELATIONS

It is well known that, for any tripartite pure state ρABC , the
relation

H(A|B)ρ +H(A|C)ρ = 0 (16)

holds. We call this a duality relation for the conditional en-
tropy. To see this, simply write H(A|B)ρ = H(ρAB)−H(ρB)
and H(A|C)ρ = H(ρAC)−H(ρC) and note that the spectra
of ρAB and ρC as well as the spectra of ρB and ρAC agree.
The significance of this relation is manifold — for example
it turns out to be useful in cryptography where the entropy
of an adversarial party, let us say C, can be estimated using
local state tomography by two honest parties, A and B. In the
following, we are interested to see if such relations hold more
generally for conditional Rényi entropies.

It was shown in [36, Lm. 6] that H↓α indeed satisfies a
duality relation, namely

H↓α(A|B)ρ +H↓β(A|C)ρ = 0 when α+ β = 2, α, β ≥ 0 .

Note that the map α 7→ β = 2 − α maps the interval [0, 2],
where data-processing holds, onto itself. This is not surpris-
ing. Indeed, consider the Stinespring dilation UB→B′B′′ of a
quantum channel EB→B′ . Then, for ρABC pure, τAB′B′′C =
UB→B′B′′ [ρABC ] is also pure and the above duality relation
implies that

H↓α(A|B)ρ ≤ H↓α(A|B′)τ ⇐⇒ H↓β(A|C)ρ ≥ H↓β(A|B′′C)τ .

Hence, data-processing for α holds if and only if data-
processing for β holds.

A similar relation has recently been discovered for H̃↑α
in [29] and independently in [6]. There, it is shown that

H̃↑α(A|B)ρ + H̃↑β(A|C)ρ = 0 when
1

α
+

1

β
= 2, α, β ≥ 1

2
.

As expected, the map α 7→ β = α
2α−1 maps the interval

[ 1
2 ,∞], where data-processing holds, onto itself.

The purpose of the following is thus to show if a similar
relation holds for the remaining two candidates, H↑α and H̃↓α.
First, we find the following alternative expression for H↑α by
determining the optimal σB in the definition (8).

Lemma 1. Let α ∈ (0, 1)∪ (1,∞) and ρAB ∈ S(AB). Then,

H↑α(A|B)ρ =
α

1− α
log tr

{(
trA{ραAB}

) 1
α

}
. (17)

This generalizes a result by one of the present authors [18,
Lm. 7].

Proof. Recall the definition

H↑α(A|B)ρ = sup
σB∈S(B)

1

1− α
log tr

{
ραAB 1A ⊗ σ1−α

B

}
= sup
σB∈S(B)

1

1− α
log tr

{
trA{ραAB}σ1−α

B

}
.

This can immediately be lower bounded by the expression
in (17) by substituting

σ∗B =

(
trA{ραAB}

) 1
α

tr
{(

trA{ραAB}
) 1
α

}
for σB . It remains to show that this choice is optimal. We
employ the following Hölder and reverse Hölder inequalities
(cf. Lemma 5 in Appendix A). For any A,B ≥ 0, the Hölder
inequality states that

tr{AB} ≤
(

tr{Ap}
) 1
p
(

tr{Bq}
) 1
q (18)

for all p, q > 1 s.t.
1

p
+

1

q
= 1.

Furthermore, if B � A, we employ a reverse Hölder inequal-
ity which states that

tr{AB} ≥
(

tr{Ap}
) 1
p
(

tr{Bq}
) 1
q (19)

for all q < 0 < p < 1 s.t.
1

p
+

1

q
= 1, .

For α < 1, we employ (18) for p = 1
α , q = 1

1−α , A =

trA{ραAB} and B = σ1−α
B to find

tr
{

trA{ραAB}σ1−α
B

}
≤
(

tr
{(

trA{ραAB}
) 1
α

})α(
tr{σB}

)1−α
,

which yields the desired upper bound since tr{σB} = 1. For
α > 1, we instead use (19). This leads us to (17) upon the
same substitutions, concluding the proof.

An alternative proof also follows by a quantum generaliza-
tion of Sibson’s identity, see, e.g. [34].

This allows us to show our main result.

Theorem 2. Let α, β ∈ (0, 1)∪ (1,∞) with α · β = 1 and let
ρABC ∈ S(ABC) be pure. Then,

H↑α(A|B)ρ + H̃↓β(A|C)ρ = 0.

Proof. After substituting β = 1
α and employing Lemma 1, it

remains to show that
α

1− α
log tr

{(
trA{ραAB}

) 1
α

}
= − 1

1− β
log tr

{((
1A ⊗ ρ

1−β
2β

C

)
ρAC

(
1A ⊗ ρ

1−β
2β

C

))β}

=
α

1− α
log tr

{((
1A ⊗ ρ

α−1
2

C

)
ρAC

(
1A ⊗ ρ

α−1
2

C

)) 1
α

}
,

or, equivalently, that the operators

trA{ραAB} and
(

1A ⊗ ρ
α−1
2

C

)
ρAC

(
1A ⊗ ρ

α−1
2

C

)



have the same spectrum of eigenvalues. To see that the latter
statement is indeed true, note that both operators are marginals
of the same tripartite rank-1 operator. More precisely, the first
operator may be rewritten as

trA{ραAB} = trA

{
ρ
α−1
2

AB ρAB ρ
α−1
2

AB

}
= trAC

{(
ρ
α−1
2

AB ⊗ 1C

)
ρABC

(
ρ
α−1
2

AB ⊗ 1C

)}
= trAC

{(
1AB ⊗ ρ

α−1
2

C

)
ρABC

(
1AB ⊗ ρ

α−1
2

C

)}
.

The spectra are thus equivalent, concluding the proof.

The relation can readily be extended for all α ≥ 0 and
β > 0. The limiting case α = 1 is simply the duality of
the conditional von Neumann entropy (16), whereas the case
α = 0, β = ∞ was shown in [8, Prop. 3.11]. (See also [37,
Lm. 25] for a concise proof.)

Finally, note that the transformation α 7→ β = 1
α maps the

interval [0, 2] where data-processing holds for H↑α to [ 1
2 ,∞]

where data-processing holds for H̃↓β .
We summarize these duality relations in the following the-

orem, where we take note that the first and second statements
have been shown in [36] and [6], [29], respectively.

Theorem 3. For any pure ρABC ∈ S(ABC), the following
duality relations hold:5

H↓α(A|B)ρ +H↓β(A|C)ρ = 0 for α, β ∈ [0, 2], α+ β = 2.

H̃↑α(A|B)ρ + H̃↑β(A|C)ρ = 0

for α, β ∈
[1

2
,∞
]
,

1

α
+

1

β
= 2,

H↑α(A|B)ρ + H̃↓β(A|C)ρ = 0

for α ∈ [0,∞), β ∈ (0,∞], α · β = 1.

IV. INEQUALITIES RELATING CONDITIONAL ENTROPIES

Recently, Mosonyi [25, Lm. 2.1] used a converse of the
Araki-Lieb-Thirring trace inequality due to Audenaert [3] to
find a converse to the ordering relation Dα(ρ‖σ) ≥ D̃α(ρ‖σ).
Here we follow a different approach and show that inequalities
of a similar type for the conditional entropies are a direct
corollary of the duality relations in Theorem 3.

Corollary 4. Let ρAB ∈ S(AB). Then, the following holds:

H↑α(A|B)ρ ≤ H̃↑α(A|B)ρ ≤ H↑2− 1
α

(A|B)ρ for α ∈
[1

2
,∞
]
,

(20)

H↓α(A|B)ρ ≤ H↑α(A|B)ρ ≤ H↓2− 1
α

(A|B)ρ for α ∈
[1

2
,∞
)
,

(21)

H̃↓α(A|B)ρ ≤ H̃↑α(A|B)ρ ≤ H̃↓2− 1
α

(A|B)ρ for α ∈
(1

2
,∞
]
,

(22)

H↓α(A|B)ρ ≤ H̃↓α(A|B)ρ ≤ H↓2− 1
α

(A|B)ρ for α ∈
[1

2
,∞
]
.

(23)
5We use the convention that 1

∞ = 0 and 0·∞ = 1 for ease of presentation.

Proof. Note that the first inequality on each line follows
directly from the relations depicted in Figure 1. Next, consider
an arbitrary purification ρABC ∈ S(ABC) of ρAB . The
relations of Figure 1, for any γ ≥ 0, applied to the marginal
ρAC are given as

H̃↑γ (A|C)ρ ≥ H̃↓γ (A|C)ρ ≥ H↓γ (A|C)ρ , and

H̃↑γ (A|C)ρ ≥ H↑γ (A|C)ρ ≥ H↓γ (A|C)ρ .

We then substitute the corresponding dual entropies according
to Theorem 3, which yields the desired inequalities upon
appropriate new parametrization.

We note that the fully classical (commutative) case of all
these inequalities is trivial except for the second inequalities
in (21) and (22), which were proven before by one of au-
thors [19, Lm. 6]. Other special cases of these inequalities are
also well known and have operational significance. For exam-
ple, (22) for α = ∞ states that H̃↑∞(A|B)ρ ≤ H̃↓2 (A|B)ρ,
which relates the conditional min-entropy in (12) to the con-
ditional collision entropy in (13). To understand this inequality
more operationally we rewrite the conditional min-entropy as
its dual semi-definite program [23],

H̃↑∞(A|B)ρ = inf
ΛB→A′

− log
(
|A| · F (ΦAA′ ,ΛB→A′ [ρAB ]

)
,

where A′ is a copy of A, the infimum is over all quantum
channels ΛB→A′ , |A| denotes the dimension of A, and ΦAA′

is the maximally entangled state on AA′. Now, the above
inequality becomes apparent since the conditional collision
entropy can be written as [9],

H̃↓2 (A|B)ρ = − log
(
|A| · F (ΦAA′ ,Λ

pg
B→A′ [ρAB ]

)
,

where Λpg
B→A′ denotes the pretty good recovery map of Bar-

num and Knill [5]. Also, (20) for α = 1
2 yields H̃↑1/2(A|B)ρ ≤

H↑0 (A|B)ρ, which relates the quantum conditional max-
entropy in (14) to the quantum conditional generalization of
the Hartley entropy in (15).

We believe that the sandwich relations (20)–(23) for α close
to 1 will prove useful in applications in quantum information
processing as they allow to switch between different defini-
tions of the conditional Rényi entropy.
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APPENDIX

We prove the following Hölder and reverse Hölder inequal-
ities for traces of operators. (See also [21, Appendix A] and
references given there.)



Lemma 5. Let A,B ≥ 0 and let p > 0, q ∈ R such that
1
p + 1

q = 1. Then, the following Hölder and reverse Hölder
inequalities hold:

tr{AB} ≤
(

tr{Ap}
) 1
p
(

tr{Bq}
) 1
q if p > 1 , (24)

tr{AB} ≥
(

tr{Ap}
) 1
p
(

tr{Bq}
) 1
q if p < 1 and B � A .

(25)

Here, Bq is evaluated on the support of B by convention.

The first statement also immediately follows from a Hölder
inequality for unitarily invariant norms (the trace norm in this
case), e.g. in [10, Cor. IV.2.6]. The following proof is a simple
reduction to the classical case.

Proof. For commuting A and B, the above result immediately
follows from the corresponding classical Hölder and reverse
Hölder inequalities. Now, let M be a pinching in the eigen-
basis of B. Since tr{AB} = tr{M[A]B}, we thus have

tr{AB} ≤
(

tr
{(
M[A]

)p}) 1
p
(

tr{Bq}
) 1
q if p > 1,

tr{AB} ≥
(

tr
{(
M[A]

)p}) 1
p
(

tr{Bq}
) 1
q if p < 1 .

under the respective constraints. Now, note that for p > 1,
we have ‖M[A]‖p ≤ ‖A‖p by the pinching inequality for the
Schatten p-norm [10, Eq. (IV.52)] and (24) follows. On the
other hand, for p < 1, we use [10, Thm. V.2.1], which implies
that

(
M[A]

)p ≥ M[Ap]. This yields (25) and concludes the
proof.
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