Entropy Inequalities

Mario Berta

Institute for Quantum Information and Matter California Institute of Technology

Caltech

Entropy I

- Shannon entropy of random variable $\left(\mathcal{X},\left\{p_{x}\right\}_{x \in \mathcal{X}}\right)$:
$\begin{aligned} & H(X):=-\sum_{x \in \mathcal{X}} p_{x} \log p_{x} \rightarrow \text { "measure of uncertainty". Ex: } \begin{aligned} & H(X)_{\delta}=0 \\ & H(X)_{\text {unif }}=\log |\mathcal{X}|\end{aligned} \\ & \text { [Shannon (48)] }\end{aligned}$

Entropy I

- Shannon entropy of random variable $\left(\mathcal{X},\left\{p_{x}\right\}_{x \in \mathcal{X}}\right)$:
- Turns out to be an important quantity in classical physics, classical information theory, classical theory of computing, etc.

Entropy I

- Shannon entropy of random variable $\left(\mathcal{X},\left\{p_{x}\right\}_{x \in \mathcal{X}}\right)$:

$$
\begin{aligned}
H(X):=-\sum_{x \in \mathcal{X}} p_{x} \log p_{x} & \rightarrow \text { "measure of uncertainty". Ex: } \begin{array}{l}
H(X)_{\delta}=0 \\
H(X)_{\text {unif }}=\log |\mathcal{X}|
\end{array}
\end{aligned}
$$

- Turns out to be an important quantity in classical physics, classical information theory, classical theory of computing, etc.
- Von Neumann entropy of quantum state ρ_{A} :

$$
\begin{array}{|r|}
\hline H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right] \quad
\end{array} \begin{aligned}
& \left(\rho_{A} \in \operatorname{Lin}\left(\mathcal{H}_{A}\right) \text { with } \rho_{A} \geq 0, \operatorname{tr}\left[\rho_{A}\right]=1\right) \\
& \text { Evon Neumann (32)] } \begin{array}{l}
H(A)_{\psi}=0 \\
H(A)_{\frac{1}{|A|}}=\log |A|
\end{array}
\end{aligned}
$$

Entropy I

- Shannon entropy of random variable $\left(\mathcal{X},\left\{p_{x}\right\}_{x \in \mathcal{X}}\right)$:

$$
\begin{aligned}
& H(X):=-\sum_{x \in \mathcal{X}} p_{x} \log p_{x} \rightarrow \text { "measure of uncertainty". Ex: } \begin{aligned}
H(X)_{\delta}=0 \\
H(X)_{\text {unif }}=\log |\mathcal{X}|
\end{aligned} \\
& \text { [Shannon (48)] }
\end{aligned}
$$

- Turns out to be an important quantity in classical physics, classical information theory, classical theory of computing, etc.
- Von Neumann entropy of quantum state ρ_{A} :

$$
\begin{aligned}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
\end{aligned} \quad \begin{aligned}
& \left(\rho_{A} \in \operatorname{Lin}\left(\mathcal{H}_{A}\right) \text { with } \rho_{A} \geq 0, \operatorname{tr}\left[\rho_{A}\right]=1\right) \\
& \text { Ex: } H(A)_{\psi}=0 \\
& H(A)_{1 / 1 \mid}^{|A|}=\log |A|
\end{aligned}
$$

- Turns out to be an important quantity in quantum physics, quantum information theory, quantum theory of computing, etc.

Entropy I

- Shannon entropy of random variable $\left(\mathcal{X},\left\{p_{x}\right\}_{x \in \mathcal{X}}\right)$:

$$
\begin{aligned}
& H(X):=-\sum_{x \in \mathcal{X}} p_{x} \log p_{x} \rightarrow \text { "measure of uncertainty". Ex: } \begin{aligned}
H(X)_{\delta}=0 \\
H(X)_{\text {unif }}=\log |\mathcal{X}|
\end{aligned} \\
& \text { [Shannon (48)] }
\end{aligned}
$$

- Turns out to be an important quantity in classical physics, classical information theory, classical theory of computing, etc.
- Von Neumann entropy of quantum state ρ_{A} :

$$
\begin{gathered}
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
\end{gathered} \quad \begin{aligned}
& \left(\rho_{A} \in \operatorname{Lin}\left(\mathcal{H}_{A}\right) \text { with } \rho_{A} \geq 0, \operatorname{tr}\left[\rho_{A}\right]=1\right) \\
& \underline{\operatorname{Ex}:} H(A)_{\psi}=0 \\
& H(A)_{\frac{1}{|A|}}=\log |A|
\end{aligned}
$$

- Turns out to be an important quantity in quantum physics, quantum information theory, quantum theory of computing, etc.
- I would like to study the mathematical properties of this quantity.

Entropy II

- Entropy:

$$
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

Entropy II

- Entropy:

$$
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

- Mutual information:

$$
I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho} \longrightarrow \xrightarrow[H(A)_{\rho}]{ }
$$

Entropy II

- Entropy:

$$
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

- Mutual information:

$$
I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho} \longrightarrow \xrightarrow[H(A)_{\rho}]{ }
$$

- Conditional entropy:

$$
H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho} \xrightarrow[H(A)_{\rho}]{ } \quad \int_{H(B)_{\rho}}
$$

Entropy II

- Entropy:

$$
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

- Mutual information:

$$
I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho} \longrightarrow \xrightarrow[H(A)_{\rho}]{ }
$$

- Conditional entropy:

$$
H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho} \xrightarrow[H(A)_{\rho}]{ } \quad \int_{H(B)_{\rho}}
$$

- Conditional mutual information:

$$
\begin{aligned}
I(A: B \mid C)_{\rho}:= & H(A C)_{\rho}+H(B C)_{\rho} \\
& -H(A B C)_{\rho}-H(C)_{\rho}
\end{aligned} \square \longrightarrow{ }_{H(A)_{\rho}} \quad{ }_{H(B)_{\rho}}
$$

Entropy II

- Entropy:

$$
H(A)_{\rho}:=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]
$$

- Mutual information:

$$
I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho} \longrightarrow \xrightarrow[H(A)_{\rho}]{ }
$$

- Conditional entropy:

$$
H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho} \xrightarrow[H(A)_{\rho}]{ } \quad \int_{H(B)_{\rho}}
$$

- Conditional mutual information:

$$
\begin{aligned}
I(A: B \mid C)_{\rho}:= & H(A C)_{\rho}+H(B C)_{\rho} \\
& -H(A B C)_{\rho}-H(C)_{\rho}
\end{aligned} \longrightarrow \longrightarrow{ }_{H(A)_{\rho}} \quad{ }_{H(B)_{\rho}}
$$

- ... (other combinations, more parties, etc.)

Outline

- Entropy - operational significance
- Entropy inequalities - laws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and its inequalities
- Conclusions

Outline

- Entropy - operational significance
- Entropy inequalities - laws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and its inequalities

Operational Significance I

- Compression: $A \underset{\rightarrow}{\text { Enc }} M \underset{\rightarrow}{\text { Dec }} A$
\rightarrow asymptotic rate for compression of $\rho_{A}^{\otimes n}$ is $\quad \lim _{n \rightarrow \infty} \frac{\left|M^{n}\right|}{n}=H(A)_{\rho}$
[Ohya, Petz (93)] [Schumacher (95)]

Operational Significance I

- Compression: $A \xrightarrow[\rightarrow]{\text { Enc }} M \xrightarrow{\text { Dec }} A$
\longrightarrow asymptotic rate for compression of $\rho_{A}^{\otimes n}$ is $\quad \lim _{n \rightarrow \infty} \frac{\left|M^{n}\right|}{n}=H(A)_{\rho}$
[Ohya, Petz (93)] [Schumacher (95)]
- Communication over channel: $M \underset{\rightarrow}{\text { Enc }} \mathcal{N}_{A \rightarrow B} \xrightarrow{\text { Dec }} M$
\rightarrow asymptotic rate of transmission (entanglement assisted) for $\mathcal{N}_{A \rightarrow B}^{\otimes n}$ is

$$
\lim _{n \rightarrow \infty} \frac{\left|M^{n}\right|}{n}=\max _{\rho} I(B: R)_{\mathcal{N}(\rho)} \text { where }\left(\mathcal{N}_{A \rightarrow B} \otimes \mathcal{I}_{R}\right)\left(\rho_{A R}\right) \text { with } \rho_{A R} \text { pure }
$$

entanglement assisted channel capacity
[Bennett et al. $(99,02)]$

Operational Significance

- Compression: $A \xrightarrow[\rightarrow]{\text { Enc }} M \xrightarrow{\text { Dec }} A$
\rightarrow asymptotic rate for compression of $\rho_{A}^{\otimes n}$ is $\quad \lim _{n \rightarrow \infty} \frac{\left|M^{n}\right|}{n}=H(A)_{\rho}$
[Ohya, Petz (93)] [Schumacher (95)]
- Communication over channel: $M \underset{\rightarrow}{\text { Enc }} \mathcal{N}_{A \rightarrow B} \xrightarrow{\text { Dec }} M$
\rightarrow asymptotic rate of transmission (entanglement assisted) for $\mathcal{N}_{A \rightarrow B}^{\otimes n}$ is

$$
\lim _{n \rightarrow \infty} \frac{\left|M^{n}\right|}{n}=\max _{\rho} I(B: R)_{\mathcal{N}(\rho)} \text { where }\left(\mathcal{N}_{A \rightarrow B} \otimes \mathcal{I}_{R}\right)\left(\rho_{A R}\right) \text { with } \rho_{A R} \text { pure }
$$

entanglement assisted channel capacity
[Bennett et al. $(99,02)]$

- Entanglement manipulation (distillation, dilution, etc.)
- Distributed compression: quantum state merging, quantum state splitting, the mother protocol, quantum state redistribution etc.

Operational Significance II

- Entropy, conditional entropy, mutual information, conditional mutual information etc. crucial (tool) for:
- Quantum Shannon theory (cf. last slide)
- Entanglement / correlation measures
- Entropic uncertainty relations
- Entanglement in quantum many body systems
- Quantum error correction
- Quantum statistical mechanics
- Thermodynamics
- Quantum communication complexity
- Quantum de Finetti theorems

Outline

- Entropy - operational significance
- Entropy inequalities - laws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and its inequalities
- Conclusions

Entropy Inequalities I

- Entropy:

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

Entropy Inequalities I

- Entropy:

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

- Mutual information:
$I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho}$
$0 \leq I(A: B)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$

Entropy Inequalities

- Entropy:
- Mutual information: $I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho}$
- Conditional entropy: $H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho}$

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

$0 \leq I(A: B)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$
$-\log |A| \leq H(A \mid B)_{\rho} \leq \log |A|$

Entropy Inequalities

- Entropy:
- Mutual information: $I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho}$
- Conditional entropy: $H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho}$

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

$$
0 \leq I(A: B)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}
$$

$$
-\log |A| \leq H(A \mid B)_{\rho} \leq \log |A|
$$

- Conditional mutual information: $0 \leq I(A: B \mid C)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$ $I(A: B \mid C)_{\rho}:=H(A C)_{\rho}+H(B C)_{\rho}$ $-H(A B C)_{\rho}-H(C)_{\rho}$

Entropy Inequalities

- Entropy:

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

- Mutual information:

$$
I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho}
$$

$$
0 \leq I(A: B)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}
$$

- Conditional entropy: $H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho}$
- Conditional mutual information: $0 \leq I(A: B \mid C)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$ $I(A: B \mid C)_{\rho}:=H(A C)_{\rho}+H(B C)_{\rho}$ $-H(A B C)_{\rho}-H(C)_{\rho}$
- Strong subadditivity of entropy (SSA):

$$
\begin{aligned}
& I(A: B \mid C)_{\rho} \geq 0 \\
& \Leftrightarrow H(A \mid C)_{\rho} \geq H(A \mid B C)_{\rho}
\end{aligned}
$$

Entropy Inequalities

- Entropy:
- Mutual information: $I(A: B)_{\rho}:=H(A)_{\rho}+H(B)_{\rho}-H(A B)_{\rho}$
- Conditional entropy: $H(A \mid B)_{\rho}:=H(A B)_{\rho}-H(B)_{\rho}$

$$
0 \leq H(A)_{\rho} \leq \log |A|
$$

$0 \leq I(A: B)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$
$-\log |A| \leq H(A \mid B)_{\rho} \leq \log |A|$

- Conditional mutual information: $0 \leq I(A: B \mid C)_{\rho} \leq \min \{2 \log |A|, 2 \log |B|\}$ $I(A: B \mid C)_{\rho}:=H(A C)_{\rho}+H(B C)_{\rho}$

$$
-H(A B C)_{\rho}-H(C)_{\rho}
$$

- Strong subadditivity of entropy (SSA):
\rightarrow generates all other inequalities, "all we know about entropy"!

$$
\begin{aligned}
& I(A: B \mid C)_{\rho} \geq 0 \\
& \Leftrightarrow H(A \mid C)_{\rho} \geq H(A \mid B C)_{\rho}
\end{aligned}
$$

Entropy Inequalities II

- Can we improve SSA (in an operationally useful way)? [Ibinson, Linden, Winter (06)] [Li, Winter (12)]
[Christandl, Schuch, Winter (09)]

$$
\begin{gathered}
I(A: B \mid C)_{\rho} \geq 0 \\
\text { vs. } \\
I(A: B \mid C)_{\rho} \geq f\left(\rho_{A B C}\right) ?
\end{gathered}
$$

Entropy Inequalities II

- Can we improve SSA (in an operationally useful way)? [Ibinson, Linden, Winter (06)] [Li, Winter (12)]
[Christandl, Schuch, Winter (09)]

$$
\begin{gathered}
I(A: B \mid C)_{\rho} \geq 0 \\
\text { vs. } \\
I(A: B \mid C)_{\rho} \geq f\left(\rho_{A B C}\right) ?
\end{gathered}
$$

[Brandao, Christandl, Yard (10)]

- What are the equality conditions of SSA?

$$
I(A: B \mid C)_{\rho}=0 \Leftrightarrow \rho_{A B C}=\left(\mathcal{I}_{A} \otimes \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\right)\left(\rho_{A C}\right) \left\lvert\, \begin{aligned}
& \text { recoverable states }
\end{aligned}\right.
$$

with $\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}(\cdot):=\rho_{B C}^{1 / 2} \rho_{C}^{-1 / 2}(\cdot) \rho_{C}^{-1 / 2} \rho_{B C}^{1 / 2}$
\rightarrow this is a quantum operation, recovery map: $\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{C}\right)=\rho_{B C}$

Entropy Inequalities II

- Can we improve SSA (in an operationally useful way)? [Ibinson, Linden, Winter (06)] [Li, Winter (12)]
[Christandl, Schuch, Winter (09)]

$$
\begin{gathered}
I(A: B \mid C)_{\rho} \geq 0 \\
\text { vs. } \\
I(A: B \mid C)_{\rho} \geq f\left(\rho_{A B C}\right) ?
\end{gathered}
$$

[Brandao, Christandl, Yard (10)]

- What are the equality conditions of SSA?

$$
I(A: B \mid C)_{\rho}=0 \Leftrightarrow \rho_{A B C}=\left(\mathcal{I}_{A} \otimes \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\right)\left(\rho_{A C}\right) \left\lvert\, \begin{aligned}
& \text { recoverable states }
\end{aligned}\right.
$$

with $\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}(\cdot):=\rho_{B C}^{1 / 2} \rho_{C}^{-1 / 2}(\cdot) \rho_{C}^{-1 / 2} \rho_{B C}^{1 / 2}$
\rightarrow this is a quantum operation, recovery map: $\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{C}\right)=\rho_{B C}$

- This characterises quantum states with conditional quantum mutual information equal to zero, but what about: $I(A: B \mid C)_{\rho} \approx 0 \Rightarrow \rho_{A B C}=$?
\longrightarrow maybe: $I(A: B \mid C)_{\rho} \geq f\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right)$?

Outline

- Entropy - operational significance
- Entropy inequalities - laws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and its inequalities
- Conclusions

Refinements |

- One way of lower bounding entropy is via quantum Renyi entropies:

$$
H_{\alpha}(A)_{\rho}:=\frac{1}{1-\alpha} \log \operatorname{tr}\left[\rho_{A}^{\alpha}\right], \quad \alpha \geq 0 \quad[\operatorname{Renyi}(61)]
$$

- von Neumann entropy: $H_{1}(A)_{\rho}=H(A)_{\rho}$
- monotone in Renyi parameter: $\alpha \geq \beta \quad \Rightarrow \quad H_{\alpha}(A)_{\rho} \geq H_{\beta}(A)_{\rho}$
- in particular (Pinsker's inequality): $H(A)_{\rho} \geq H_{1 / 2}(A)_{\rho}=\log \operatorname{tr}\left[\sqrt{\rho_{A}}\right]^{2}$

Refinements |

- One way of lower bounding entropy is via quantum Renyi entropies:

$$
H_{\alpha}(A)_{\rho}:=\frac{1}{1-\alpha} \log \operatorname{tr}\left[\rho_{A}^{\alpha}\right], \quad \alpha \geq 0 \quad[\text { Renyi (61) }]
$$

- von Neumann entropy: $H_{1}(A)_{\rho}=H(A)_{\rho}$
- monotone in Renyi parameter: $\alpha \geq \beta \quad \Rightarrow \quad H_{\alpha}(A)_{\rho} \geq H_{\beta}(A)_{\rho}$
- in particular (Pinsker's inequality): $H(A)_{\rho} \geq H_{1 / 2}(A)_{\rho}=\log \operatorname{tr}\left[\sqrt{\rho_{A}}\right]^{2}$
- Define Renyi conditional quantum mutual information:
$I_{\alpha}(A: B \mid C)_{\rho}=\ldots \quad \rightarrow$ with: $I_{1}(A: B \mid C)_{\rho}=I(A: B \mid C)_{\rho}$
[B., Wilde, Seshadreesan (14)]

Refinements |

- One way of lower bounding entropy is via quantum Renyi entropies:

$$
H_{\alpha}(A)_{\rho}:=\frac{1}{1-\alpha} \log \operatorname{tr}\left[\rho_{A}^{\alpha}\right], \quad \alpha \geq 0 \quad[\text { Renyi }(61)]
$$

- von Neumann entropy: $H_{1}(A)_{\rho}=H(A)_{\rho}$
- monotone in Renyi parameter: $\alpha \geq \beta \quad \Rightarrow \quad H_{\alpha}(A)_{\rho} \geq H_{\beta}(A)_{\rho}$
- in particular (Pinsker's inequality): $H(A)_{\rho} \geq H_{1 / 2}(A)_{\rho}=\log \operatorname{tr}\left[\sqrt{\rho_{A}}\right]^{2}$
- Define Renyi conditional quantum mutual information:
$I_{\alpha}(A: B \mid C)_{\rho}=\ldots \quad \rightarrow$ with: $I_{1}(A: B \mid C)_{\rho}=I(A: B \mid C)_{\rho}$
[B., Wilde, Seshadreesan (14)]
- Monotone? $\alpha \geq \beta \Rightarrow I_{\alpha}(A: B \mid C)_{\rho} \geq I_{\beta}(A: B \mid C)_{\rho}$?

Refinements II

- Conjecture:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right) ?
$$

[B., Wilde, Seshadreesan (14)] $\quad F(\rho, \sigma):=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}\|\rho\|_{1}:=\operatorname{tr}\left[\sqrt{\rho^{\dagger} \rho}\right]$

$$
\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}(\cdot):=\rho_{B C}^{1 / 2} \rho_{C}^{-1 / 2}(\cdot) \rho_{C}^{-1 / 2} \rho_{B C}^{1 / 2}
$$

\rightarrow previous ideas: $I(A: B \mid C)_{\rho} \geq \frac{1}{4}\left\|\rho_{A B C}-\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right\|_{1}^{2}$?
[Kim (13)] [Zhang (13)]

Refinements II

- Conjecture:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right) ?
$$

[B., Wilde, Seshadreesan (14)] $\quad F(\rho, \sigma):=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}\|\rho\|_{1}:=\operatorname{tr}\left[\sqrt{\rho^{\dagger} \rho}\right]$

$$
\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}(\cdot):=\rho_{B C}^{1 / 2} \rho_{C}^{-1 / 2}(\cdot) \rho_{C}^{-1 / 2} \rho_{B C}^{1 / 2}
$$

\rightarrow previous ideas: $I(A: B \mid C)_{\rho} \geq \frac{1}{4}\left\|\rho_{A B C}-\Lambda_{C \rightarrow B C}^{\text {Petz }}\left(\rho_{A C}\right)\right\|_{1}^{2}$?
[Kim (13)] [Zhang (13)]

- This would give a characterisation of states with small conditional quantum mutual information:

$$
I(A: B \mid C)_{\rho} \approx 0 \Rightarrow \rho_{A B C}=? \longrightarrow \text { we had: } F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\text {Petz }}\left(\rho_{A C}\right)\right) \approx 1
$$

Refinements II

- Conjecture:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right) ?
$$

[B., Wilde, Seshadreesan (14)] $\quad F(\rho, \sigma):=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}^{2}\|\rho\|_{1}:=\operatorname{tr}\left[\sqrt{\rho^{\dagger} \rho}\right]$

$$
\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}(\cdot):=\rho_{B C}^{1 / 2} \rho_{C}^{-1 / 2}(\cdot) \rho_{C}^{-1 / 2} \rho_{B C}^{1 / 2}
$$

\rightarrow previous ideas: $I(A: B \mid C)_{\rho} \geq \frac{1}{4}\left\|\rho_{A B C}-\Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right\|_{1}^{2}$?
[Kim (13)] [Zhang (13)]

- This would give a characterisation of states with small conditional quantum mutual information:

$$
I(A: B \mid C)_{\rho} \approx 0 \Rightarrow \rho_{A B C}=? \longrightarrow \text { we had: } F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\text {Petz }}\left(\rho_{A C}\right)\right) \approx 1
$$ approximately recoverable states

- However, we only have proofs for special cases (analytical evidence) and numerical evidence...

Refinements III

- Recent breakthrough:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

[Fawzi, Renner (14)]
$\mathcal{U}_{C}, \mathcal{V}_{B C}$: unitaries

Refinements III

- Recent breakthrough:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

- Proof: very involved (e.g., de Finetti reductions)

Refinements III

- Recent breakthrough:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

[Fawzi, Renner (14)]
$\mathcal{U}_{C}, \mathcal{V}_{B C}$: unitaries

- Proof: very involved (e.g., de Finetti reductions)
- Fidelity of recovery:

$$
F(A: B \mid C)_{\rho}:=-\log \sup _{\Lambda_{C \rightarrow B C}} F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}\left(\rho_{A C}\right)\right) \quad \text { [Wilde, Seshadreesan (14)] }
$$

Refinements III

- Recent breakthrough:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

[Fawzi, Renner (14)]
$\mathcal{U}_{C}, \mathcal{V}_{B C}$: unitaries

- Proof: very involved (e.g., de Finetti reductions)
- Fidelity of recovery:

$$
F(A: B \mid C)_{\rho}:=-\log \sup _{\Lambda_{C \rightarrow B C}} F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}\left(\rho_{A C}\right)\right) \quad \text { [Wilde, Seshadreesan (14)] }
$$

- Alternative, operational (simpler) proofs for:

$$
I(A: B \mid C)_{\rho} \geq F(A: B \mid C)_{\rho}
$$

[Brandao, Harrow, Oppenheim, Strelchuk (14)]
[B., Tomamichel (15)]

Refinements III

- Recent breakthrough:

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

[Fawzi, Renner (14)]
$\mathcal{U}_{C}, \mathcal{V}_{B C}$: unitaries

- Proof: very involved (e.g., de Finetti reductions)
- Fidelity of recovery:
$F(A: B \mid C)_{\rho}:=-\log \sup _{\Lambda_{C \rightarrow B C}} F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}\left(\rho_{A C}\right)\right) \quad$ [Wilde, Seshadreesan (14)]
- Alternative, operational (simpler) proofs for:

$$
I(A: B \mid C)_{\rho} \geq F(A: B \mid C)_{\rho}
$$

[Brandao, Harrow, Oppenheim, Strelchuk (14)]
[B., Tomamichel (15)]

- Applications so far: understanding quantum correlations better [Wilde, Seshadreesan (14)] [Wilde (14)] [Li, Winter (14)][Piani (15)]

Outline

- Entropy - operational significance
- Entropy inequalities - laws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and its inequalities
- Conclusions

Quantum Relative Entropy I

- Parent quantity: $D(\rho \| \sigma):=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$

$$
(\rho, \sigma>0)
$$

[Umegaki (62)]

Quantum Relative Entropy I

- Parent quantity: $D(\rho \| \sigma):=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$
\rightarrow we have: $D\left(\rho_{A} \| 1_{A}\right)=-H(A)_{\rho}$

$$
(\rho, \sigma>0)
$$

$$
\begin{aligned}
& D\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)=-H(A \mid B)_{\rho} \\
& D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=I(A: B)_{\rho} \\
& D\left(\rho_{A B C} \| \exp \left(\log \rho_{A C}+\log \rho_{B C}-\log \rho_{C}\right)\right)=I(A: B \mid C)_{\rho}
\end{aligned}
$$

Quantum Relative Entropy I

- Parent quantity: $D(\rho \| \sigma):=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$
[Umegaki (62)]
\rightarrow we have: $D\left(\rho_{A} \| 1_{A}\right)=-H(A)_{\rho}$

$$
(\rho, \sigma>0)
$$

$$
\begin{aligned}
& D\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)=-H(A \mid B)_{\rho} \\
& D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=I(A: B)_{\rho} \\
& D\left(\rho_{A B C} \| \exp \left(\log \rho_{A C}+\log \rho_{B C}-\log \rho_{C}\right)\right)=I(A: B \mid C)_{\rho}
\end{aligned}
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0
$$

\longrightarrow irreversibility in quantum mechanics, parent inequality

(x)

- Parent quantity: $D(\rho \| \sigma):=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$
[Umegaki (62)]
\longrightarrow we have: $D\left(\rho_{A} \| 1_{A}\right)=-H(A)_{\rho}$

$$
(\rho, \sigma>0)
$$

$$
\begin{aligned}
& D\left(\rho_{A B} \| 1_{A} \otimes \rho_{B}\right)=-H(A \mid B)_{\rho} \\
& D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=I(A: B)_{\rho} \\
& D\left(\rho_{A B C} \| \exp \left(\log \rho_{A C}+\log \rho_{B C}-\log \rho_{C}\right)\right)=I(A: B \mid C)_{\rho}
\end{aligned}
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0
$$

\longrightarrow irreversibility in quantum mechanics, parent inequality

- Example: strong subadditivity of entropy (SSA)

$$
\begin{gathered}
\rho=\rho_{A B C}, \sigma=1_{A} \otimes \rho_{B C}, \mathcal{N}(\cdot)=\operatorname{tr}_{B}[\cdot] \Rightarrow \mathcal{N}(\rho)=\rho_{A C}, \mathcal{N}(\sigma)=1_{A} \otimes \rho_{C} \\
0 \leq D(\rho \| \sigma)-D\left(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)=-H(A \mid B C)_{\rho}+H(A \mid C)_{\rho}=I(A: B \mid C)_{\rho}\right.
\end{gathered}
$$

Quantum Relative Entropy II

- Can we improve MONO (in an operationally useful way)? [Li, Winter (12, 14)]

$$
\begin{gathered}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 \\
\text { vs. } \\
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma) \geq f(\rho, \sigma, \mathcal{N}) ?
\end{gathered}
$$

Quantum Relative Entropy II

- Can we improve MONO (in an operationally useful way)? [Li, Winter (12, 14)]

$$
\begin{gathered}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 \\
\text { vs. } \\
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma) \geq f(\rho, \sigma, \mathcal{N}) ?
\end{gathered}
$$

- What are the equality conditions for MONO?

$$
\left.\begin{array}{rl}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)=0 \Leftrightarrow \rho & =\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho)) \\
\sigma & =\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma))
\end{array}\right][\text { Petz (88)] }
$$

with $\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$
\rightarrow this is a quantum operation, recovery map.

Quantum Relative Entropy II

- Can we improve MONO (in an operationally useful way)? [Li, Winter (12, 14)]

$$
\begin{gathered}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 \\
\text { vs. } \\
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma) \geq f(\rho, \sigma, \mathcal{N}) ?
\end{gathered}
$$

- What are the equality conditions for MONO?

$$
D(\rho \| \sigma)-D\left(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)=0 \Leftrightarrow \rho=\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho)),{ }_{\sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma))[\text { Petz (88)] }\right.
$$

with $\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$
\rightarrow this is a quantum operation, recovery map.

- If the relative entropy difference is zero we can undo noisy quantum operation!

Quantum Relative Entropy II

- Can we improve MONO (in an operationally useful way)? [Li, Winter (12, 14)]

$$
\begin{gathered}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 \\
\text { vs. } \\
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma) \geq f(\rho, \sigma, \mathcal{N}) ?
\end{gathered}
$$

- What are the equality conditions for MONO?

$$
\begin{array}{r}
D(\rho \| \sigma)-D\left(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)=0 \Leftrightarrow \rho=\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right. \\
\sigma=\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma)) \tag{88}
\end{array}
$$

with $\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$
\rightarrow this is a quantum operation, recovery map.

- If the relative entropy difference is zero we can undo noisy quantum operation!
- But we also need to understand the approximate case...

Quantum Relative Entropy III

- Conjecture:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) ?
$$

[Zhang (13)] [B., Wilde, Seshadreesan (14)]
with $\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$

Quantum Relative Entropy III

- Conjecture:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) ?
$$

[Zhang (13)] [B., Wilde, Seshadreesan (14)]
with $\quad \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$

- Approximate equality case (approximately undoing noisy quantum operations):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \approx 0 \Rightarrow \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho)) \approx \rho \quad \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma))=\sigma
$$

Quantum Relative Entropy III

- Conjecture:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) ?
$$

[Zhang (13)] [B., Wilde, Seshadreesan (14)]
with $\quad \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$

- Approximate equality case (approximately undoing noisy quantum operations):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \approx 0 \Rightarrow \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho)) \approx \rho \quad \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma))=\sigma
$$

- Like in the case of SSA only an alternative bound is known:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \mathcal{V} \circ \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}} \circ \mathcal{U}(\mathcal{N}(\rho))\right)
$$

Quantum Relative Entropy III

- Conjecture:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) ?
$$

[Zhang (13)] [B., Wilde, Seshadreesan (14)]
with $\Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\cdot):=\sigma^{1 / 2} \mathcal{N}^{\dagger}\left(\mathcal{N}(\sigma)^{-1 / 2}(\cdot) \mathcal{N}(\sigma)^{-1 / 2}\right) \sigma^{1 / 2}$

- Approximate equality case (approximately undoing noisy quantum operations):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \approx 0 \Rightarrow \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho)) \approx \rho \quad \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\sigma))=\sigma
$$

- Like in the case of SSA only an alternative bound is known:

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \mathcal{V} \circ \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}} \circ \mathcal{U}(\mathcal{N}(\rho))\right)
$$

[B., Lemm, Wilde (14)] $\mathcal{U}, \mathcal{V}:$ unitaries
$\longrightarrow>$ however, we would like to know more about the unitaries...

Equivalence

- The following are equivalent:
- Strong subadditivity of entropy (SSA)

$$
I(A: B \mid C)_{\rho} \geq 0
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0
$$

- Joint convexity of relative entropy (JC)
- Concavity of conditional entropy (CC)

Equivalence

- The following are equivalent:
- Strong subadditivity of entropy (SSA)

$$
I(A: B \mid C)_{\rho} \geq 0
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0
$$

- Joint convexity of relative entropy (JC)
- Concavity of conditional entropy (CC)
- Refinements in terms of Petz recovery map are equivalent as well:

$$
\begin{aligned}
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right) & \Leftrightarrow D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) \\
& \Leftrightarrow \ldots
\end{aligned}
$$

[B., Lemm, Wilde (14)]

Equivalence

- The following are equivalent:
- Strong subadditivity of entropy (SSA)

$$
I(A: B \mid C)_{\rho} \geq 0
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0
$$

- Joint convexity of relative entropy (JC)
- Concavity of conditional entropy (CC)
- Refinements in terms of Petz recovery map are equivalent as well:

$$
\begin{aligned}
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \Lambda_{C \rightarrow B C}^{\mathrm{Petz}}\left(\rho_{A C}\right)\right) & \Leftrightarrow D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}}(\mathcal{N}(\rho))\right) \\
& \Leftrightarrow \ldots
\end{aligned}
$$

[B., Lemm, Wilde (14)]
\rightarrow however, we do not know if they actually hold: either all of these refinements (in terms of the Petz recovery map) are true or all are wrong...

Outline

- Entropy - operational significance
- Entropy inequalities - Iaws of information theory
- Recent progress on refining these laws
- Extension: quantum relative entropy and 'its inequalities
- Conclusions

Conclusions

- Strong subadditivity of entropy (SSA):

$$
I(A: B \mid C)_{\rho} \geq 0
$$

extended to

$$
I(A: B \mid C)_{\rho} \geq-\log F\left(\rho_{A B C}, \mathcal{V}_{B C} \circ \Lambda_{C \rightarrow B C}^{\mathrm{Petz}} \circ \mathcal{U}_{C}\left(\rho_{A C}\right)\right)
$$

- Monotonicity of relative entropy under quantum operations (MONO):

$$
\begin{gathered}
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 \\
\text { extended to }
\end{gathered}
$$

$$
D(\rho \| \sigma)-D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \geq-\log F\left(\rho, \mathcal{V} \circ \Lambda_{\mathcal{N}, \sigma}^{\mathrm{Petz}} \circ \mathcal{U}(\mathcal{N}(\rho))\right)
$$

- Petz recovery map form to (dis)prove, many potential applications

