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Asymptotic capacity of a quantum channel 
to simulate another quantum channel in 
the presence of free entanglement:
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for free?
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What happens for free classical communication instead of entanglement?
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Question: at what rate is entanglement, in the form of ebits, needed in order to 
asymptotically simulate a quantum channel, when classical communication is given 
for free?

Answer:
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                                is entanglement breaking.
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The quantum state      is the purification of a special de Finetti state (a state 
which consists of n identical and independent copies of a state on a single 
subsystem) --> no iid structure!
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One-shot information theory, smooth entropy formalism [6,7]. One-shot 
entanglement cost of quantum states [8,9] to evaluate:                           .
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Capacity: optimal asymptotic rate at which information can be sent error free.
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For qubit channels [10]*: 
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Qubit dephasing channel:

E(⇢) = (1� p) · ⇢+ p · �z⇢�z

               (red)
vs. * (blue)
vs.       (green)QE

[1] Bennett. et al., arXiv:0912.5537v2, 2009
[10] Wootters, PRL 80:2245, 1998

Q = Q!

Quantum reverse Shannon theorem,       is a strong converse capacity [1].

Strong converse capacity: minimal asymptotic rate above which any attempt to send 
information necessarily has exponentially small fidelity.
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adversary has only bounded size (noisy) 
quantum storage [11]. Solves: bit 
commitment, oblivious transfer, secure 
identification etc. [...].

F = E⌦⌫·m

[11] Wehner et al., PRL 100:220502, 2008
[12] König et al., IEEE TIT  58:1962, 2012

Cstrong(E) · ⌫ <
1

2

EC(E) · ⌫ <
1

2

Qstrong(E) · ⌫ <
1

2

Special case                       , m=number of 
qubits transmitted during protocol [12]:

New results in arXiv:1111.2026v3 (B., Fawzi, Wehner) --> ICITS 12, CRYPTO 12:

Our improvement:
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Question: at what rate is quantum communication, or equivalently entanglement, 
needed in order to asymptotically simulate a quantum channel, when classical 
communication is given for free?

Answer:
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